
RTFM (Read The Factual Mails) —
Augmenting Program Comprehension with Remail

Alberto Bacchelli, Michele Lanza, Vitezslav Humpa
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—The advent of globalization has led to the adoption
of distributed software development as a common practice.
One of its drawbacks -the absence of impromptu meetings-
is tackled with other communication means, such as emails,
instant messaging, or forums. Mailing lists have proven to be ef-
fective for enabling developers’ collaboration and coordination:
Being asynchronous, emails can evade timezone barriers; being
public, mailing lists maintain developers’ awareness; being
recorded, email archives offer information on system evolution.

Emails can provide information about a task, clarify imple-
mentation details, or reveal hidden connections among entities,
always within the clear context of a discussion. As a result, we
argue that emails might help program comprehension.

We devised Remail, an Eclipse plugin to integrate email
communication in the IDE. It allows developers to seamlessly
handle code entities and emails concerning the source code.
Discussions relevant to chosen entities can be retrieved easily,
thus providing an updated and effective form of complementary
documentation. We present design and implementation of
Remail, and illustrate, through a number of scenarios, how
it can augment program comprehension.

I. Introduction

Developers spend most of their programming time on
software maintenance and program comprehension. Software
maintenance is estimated to impact between 85% and 90% of
the global cost of a software system [6], [21]; while program
comprehension takes up 50-60% of this maintenance time [5].

Clear, comprehensive, and updated software documentation
would be an effective approach to reduce time spent in
program comprehension. Nevertheless, industrial developers
report how documentation is commonly inadequate, outdated,
and hard to retrieve or link to actual source code entities [14].
Open source development projects are similarly affected by
issues related to documentation [8].

In small co-located development teams, unplanned face-
to-face meetings are the favorite form of communication
when developers face program comprehension problems [14].
Developers who need to understand source code entities (e.g.,
to know the design rationale behind a certain implementation
–the most common information need for a developer [12]), and
cannot find the appropriate documentation, simply query other
programmers. This solution, besides disrupting developers’
attention and retaining knowledge by a few developers, is
inapplicable to large or distributed development projects.

Developers, thus, replace face-to-face meetings with
electronic communication means. Instant messaging, wikis,

forums are viable options, but the decisive role is played
by emails, indeed: “Mailing lists are the bread and butter of
project communications” [7]. Emails are asynchronous, thus
evade time zone barriers and do not disrupt developers’ atten-
tion; mailing lists broadcast discussions, announcement, and
decisions to all the participants, thus maintaining developers’
awareness; emails are not bound to specific abstraction levels
(as opposed to commit messages, design documents, or code
comments), thus they can be used to discuss issues ranging
from low-level decisions (e.g., implementation, bug fixing) up
to high-level considerations (e.g., design rationales); mailing
lists archive messages, thus offering a historical perspective.

Development mailing lists are places in which developers
discuss and share knowledge. Gleixner, main maintainer of
the Real-Time Linux Kernel, explains how “the Linux kernel
mailing list archives provide a huge choice of technical
discussions” and reveals that developers are “too lazy or too
busy” to write documentation, since they “believe that it is
all documented in [. . . ] the maze of the Linux kernel mailing
list archives which are freely available for the interested
reader.” [8]

Considering the breadth of the information that is to
be found in mailing lists (e.g., information about how to
perform a specific development task, clarification on certain
implementation details, explanation of high-level design
decisions), and that readers are able to always verify the
context of ongoing discussions and decide whether the
retrieved information applies to their situation, we argue
that emails can be used to help program comprehension
tasks.

We present Remail, a plugin for Eclipse, which integrates
email archives in the IDE. Remail is a recommendation
system for emails: It allows developers to easily retrieve dis-
cussions related to the chosen code entities. The practitioner
can read and learn from previous discussions occurred among
programmers, thus accessing an updated and effective form of
complementary documentation. Using Remail the interaction
with the emails is within the development environment, i.e.,
the programmer is not forced to frequent context switches
and can retain the current development situation.

Structure of the paper: In Section II we present Remail,
our recommender for emails and, in Section III, we illustrate
how it can augment program comprehension. In Section V
we present the related work, and we conclude in Section VI.



II. REmail: Recommending Emails

When introducing the concept of open source projects,
Fogel invites to use mailing lists “as much as possible, and
as conspicuously as possible”, since “searching in them [for
answers to technical questions] can produce answers” [7].
Nevertheless, two critical issues hinder both a conspicuous
usage and the effectiveness of mailing lists in supporting
program comprehension and software development:

1) Mailing lists store very large amounts of messages: The
archive of Linux counts more than one million messages,
the mailing lists of smaller but active projects count tens
of thousands of emails. Finding, in such archives, the
most relevant information concerning a specific code
entity is a non-trivial task, and important discussions
could be missed [10].

2) Development mailing lists discuss topics related to
project development and are continuously read and
written by developers. Developers spend most of their
programming, designing, and understanding time within
IDEs [14]. However, no matter how much related emails
are to software development, programs that are external
to IDEs manage them, sometimes even in a web browser.
Therefore emails are completely disconnected from the
development environment.

We devised Remail to tackle both issues. Remail rec-
ommends the emails that are related to specified code
artifacts, by using the lightweight techniques we devised
and thoroughly evaluated for this task [1], [3]. This reduces
the amount of messages to be read by orders of magnitude,
and lets practitioners focus on the emails related to their
tasks. In addition, Remail is a modular plugin for the Eclipse
IDE, thus among other benefits, it allows developers to (i)
simultaneously inspect code and content of messages, easily
(ii) prompt recovered traceability links between code and
emails, and (iii) minimize the disruptive context switches
necessary to access email data while programming.

Eclipse has been our target IDE because of its modular
and pluggable structure, its significant amount of users (who
can benefit from Remail, and provide feedback for further
improvement), and its support for multiple languages. The
current implementation of Remail is targeted to java systems,
however our lightweight linking techniques have proven to be
effective for a number of other languages (e.g., ECMAScript,
PHP) [3]; the multi-language support of Eclipse paves the
way to expand Remail to other languages with a minor effort.

Since Remail can be considered a recommendation system,
we detail it by following the division described by Robillard
et al. [19]: A recommender system involves: a data-collection
mechanism to store development-process data and artifacts
in a model, a recommendation engine to analyze the data
and generate recommendation, and a user interface to trigger
recommendations and present the results.

A. Data-collection Mechanism

Figure 1 shows the infrastructure we devised for handling
the data in Remail. The section Available email archives
reports the two formats from which Remail collects data.

Eclipse

Remail

SQLite
DB

Package
explorer

Source mailing lists

MarkMail service

Mailing lists

Available email archives

PostgreSQL
database

MBox files

Mailman archiver

Mailing Lists

JMiler
importer

Email clients

Figure 1. Data-handling infrastructure

PostgreSQL database: This solution stores emails into
a running instance of a PostgreSQL server, according to
a specific meta-model we devised (the interested reader
can refer to Remail’s implementation1 for further details).
Since Remail’s recommendation engine mainly uses regular
expression for finding relevant emails, the database solution
offers the best performances: PostgreSQL provides a highly
optimized and effective platform for regular expression based
queries. In addition, the database solution allows multiple
connections, thus enabling multiple developers to work
simultaneously using a single email archive. This can be an
advantage when rating email relevance: Whenever developers
retrieve an irrelevant email (traceability links cannot be
always perfect), they can rate it as non-interesting, and all
the team would benefit from its removal.

MBox files: This solution provides messages in plain
text files, according to the RFC 28222 Internet Message
format. The MBox solution is lightweight in terms of
requirements and can take advantage of established email
clients. While the database approach needs a running instance
of PostgreSQL server, MBox files can be directly accessed
on the filesystem. In addition, a number of popular email
clients (e.g., Mozilla Thunderbird and related clients, Apple
Mail, Eudora) use the MBox format to store the messages
on which they operate. This is a decisive benefit offered
by this approach: Practitioners are able to immediately take
advantage of the emails already archived by their email
clients, just by pointing Remail to the right folders. From
that moment, simply and transparently, new messages in the
email client will be also available in Remail, modified or
deleted emails in the client will be also accordingly updated
in Remail.

New developers, analysts, or researchers can be interested
in accessing archives of mailing lists to which they are not

1http://code.google.com/p/r-email/
2http://tools.ietf.org/html/rfc2822

http://code.google.com/p/r-email/
http://tools.ietf.org/html/rfc2822


yet subscribed. The first section of Figure 1, called Source
mailing lists, shows the three different sources for emails
that can be used for this purpose. In the top, we find the
mailing lists managed by GNU Mailman3, which uses the
MBox format. Most open source projects use Mailman as
their list management system and also publicly offer the
email archives. As they are already in MBox format, they
can be immediately used by Remail.

In the bottom part of the first section, we find mailing
lists managed by the MarkMail4, a free online service for
searching within constantly updated mailing list archives. It
stores and consistently displays more than 8,000 mailing
lists, mainly taken from open source software projects. We
implemented JMiler, an importer that crawls the MarkMail
website, extracts all the emails from the selected mailing
lists, and populates PostgreSQL databases or MBox files.

Finally, the aforementioned solution of using a pre-existing
email client is also presented in the first section of Figure 1.
We note how, by using the MBox files approach, the messages
imported via Mailman, or using the JMiler importer, can be
used not only by Remail, but also transparently by the email
clients, which will be able to directly operate on them.

B. Recommendation Engine
The recommendation engine analyzes the data offered

by the Available email archives layer and generates the
recommendation for the provided context. Users specify the
context directly from the Eclipse environment: They select
the packages and classes in which they are interested and
trigger the engine. The recommendation consists in presenting
emails that discuss the chosen classes, as they might be useful
for program comprehension and augmenting awareness.

Retrieving the most appropriate emails, given a class, is a
non-trivial task. We previously assessed that this task can be
tackled with lightweight text matching techniques [1], which
achieve notable results also compared to more sophisticated
information retrieval methods [3]. In our previous work, we
devised six techniques that can provide all the links, from a
chosen entity to tens of thousands of emails, in a few seconds.
These are at the basis of our current Remail recommendation
engine, the interested reader can refer to our previous work
for further details on the evaluation and the rationale of our
techniques, and can refer to the Remail source code for the
actual implementation.

Since our lightweight methods offer different trade-offs
between precision and recall, users could find some of them
to be more appropriate for their needs. For this reason, we
included all the methods in the Remail engine and let the
user configure the preferred option.

C. User Interface
Figure 2 presents the Remail plugin as seen during a

development session in the Eclipse IDE.
3The GNU Mailing List Manager, http://www.gnu.org/software/mailman
4http://www.markmail.org

Package Explorer: This is the entry point for interacting
with Remail and triggering its recommendation engine (Fig-
ure 2, Point I). The first time Remail is used, the developer
selects the classes and packages of interest and starts the
search by clicking Remail search in the popup menu. By
selecting a package, the search will be recursively performed
in all the subclasses. Once the process is completed, next to
each chosen entity in the Package Explorer, the user sees a
number, which shows how many “hits” each entity has within
the mailing list, thus effectively measuring the popularity of
the entities [2]. As we discuss in Section III, the popularity
can be used as an entry point to study an unknown system.

Emails View: Once a search has been performed, the
user can click on any indexed class in the package explorer
and the Emails View (Figure 2, Point II) will be updated
accordingly. The visualization used in this panel conveys
multiple details: (1) The messages are sorted by time, (2) the
three columns (namely date, author, and subject) chunk the
main metadata, and (3) the nested tree layout preserves the
discussion threads. This view is similar to the one presented
in common email clients: It scales to a vast number of
emails and gives a temporal dimension. The latter feature
is interesting from a program comprehension point of view:
Even though the source code is updated, it is possible to
walk back in time, by reading the emails discussing a class
in the past. In mailing lists emails are organized in threads:
Whenever there is a reply on an email, subsequent emails
are handled in discussion threads by email clients. Remail
supports threads in the Available email archives layer, in the
Emails View, and in the Email Content View. This enhances
email readability and the discussion context is more explicit.

Email Content View: Point III in Figure 2 details the
panel that is opened when a specific email is selected in the
Emails View. Its content is also visual: A box presents the
metadata, different colors and bars distinguish the different
quotation levels, and a bold red typeface highlights the name
of the class for which the email was recommended.

Editor support: Most time that developers spend using
IDEs is focused on the editor, where they actually work with
the source code. They might want to maximize the editor to
completely fill the screen. By doing so, the views of Remail
are not visible. Therefore, we enhance the Editor itself to
provide support in this situation. Markers signal general point
of interest in any of the resource files. We have used the
bookmark markers to provide information about all the class
names visible in the source code editor, to which some emails
have been linked. A toolbar button triggers markers, so that
user can decide whether to show them. In Figure 2 Point IV,
the pointer hovers a marker in a line of code that uses the
class Fields, and Remail informs us about the existence of
eight emails concerning this entity.

http://www.gnu.org/software/mailman
http://www.markmail.org


I

II

III

IV

Figure 2. The Remail Plugin

D. Implementation details

Having a working implementation of Remail allowed us
not only to run the case study we present in Section III, but
also to face difficulties posed by a real-world context, such
as performance and usability issues.

Performances and indexing: When using MBox files
as data source, performance must be taken into account.
Remail relies on fast and lightweight techniques, which find
relationships between a source code entity and thousands of
emails in seconds. As a consequence, it is feasible to trigger
a new searching process on the MBox files every time users
want to inspect emails related to a class. The advantage
is that links are always updated, even when archive files
are externally modified (e.g., by email clients). We found
this approach to be inappropriate when dealing with more
than one class (e.g., with a package) since the linking time
grows linearly with the number of entities to be linked. For
this reason, Remail requires a mechanism to store links
and additional information. Since we want the MBox files
to be correctly used by other applications, they cannot be
modified to store extraneous information. For this reason,
we rely on an internal lightweight database (see Figure 1):
The first time Remail is used on a class, the results is
stored in this database which, from that moment, is used to
present results instantaneously. The user can trigger the cache
update whenever necessary. Finally, since the first linking of
a complete project can take minutes, we give feedback to the

user about the process with a progress bar. The PostgreSQL
solution already saves the links in a specific table, thus does
not requires the internal Remail cache.

II

I

III

Figure 3. A data source configuration phase

Source configuration: Remail offers an interactive
configuration manager. It allows users to configure the
preferred code-to-email linking technique, the email archives
to be used as sources (either a PostgreSQL database or MBox
files), and global message filtering. Point I in Figure 3 details
the procedure for specifying MBox files. Users can indicate
the files already operated by their email clients, independent
MBox files, and empty files. For the last type of files, also
the location of JMiler is to be provided (Point II): Given a
correct syntax (e.g., org freenetproject devl) and an existing
mailing list, JMiler crawls MarkMail and populates the file
with the retrieved data. By clicking on PostgreSQL (Point
III), a similar interface is shown to describe the configuration
for a database source.



Figure 4. Excerpt of a related, however irrelevant, linked email

Global email filtering: During our case studies we
obtained a considerable number of emails, that indeed
referred to a class in question, but were irrelevant in a
program comprehension context. The vast majority of such
irrelevant messages are automatically generated and sent by
issue repository systems, or by version control systems for
detailing commits (e.g., see Figure 4). These emails include
listings of all classes that are part of each commit or defect
report, which is hardly relevant for their understanding.

Figure 5. Email filtering configuration

Remail includes a message filtering feature to reject
messages based on subject and author fields. The filtering
configuration panel is shown in Figure 5. This feature proved
to be helpful during our case study: The emails posted to the
mailing lists by the version control systems have a special
subject and all the emails posted by the issue repository
system have the same sender, thus, by creating filters, we
had been able remove all unnecessary emails. The filtered
emails are removed from the linking results and do not appear
in Email View, nor they are counted as “hits”. The filtered
links are not removed from the caching mechanism, thus we
can try different filters without triggering the search again.

Email rating: In Point II of Figure 2 a checkbox close
to each email allows users to give a binary rating to emails.
Whenever users find an email to be not relevant (e.g., wrongly
retrieved by the recommendation engine), they can uncheck
the box and the email is not presented again. This information
is stored in a table in the case of PostgreSQL, while in the
internal cache when using MBox files.

III. Program comprehension through emails
We present scenarios to illustrate the benefits of the

program comprehension support that Remail offers by rec-
ommending emails. We explore two open source projects,
Apache Mina5 and Freenet6, from unrelated domains, with
different size, and emerging from distinct communities.
Table I contains a numerical overview of the two systems.

Project Classes Mailing List Messages
Freenet 1,424 org.freenetproject.devl 22,859
Apache Mina 408 org.apache.mina.dev 21,079

Table I
Investigated software systems

A. Entry points from class popularity in emails

When starting a program comprehension effort, a crucial
issue is knowing where to begin the investigation. Email data
provides both qualitative and quantitative information for
this purpose. The augmented Package Explorer view, which
shows decorations with the number of emails related to the
chosen packages and classes, gives hints on the “popularity”
of entities in the mailing list, in quantitative terms. We argue
that this value might be high in classes that implement the
core functionalities of a system, thus it might be used for
recommending entry points for program comprehension.

This “secondary” recommendation, based on popularity,
can be easily contextualized and evaluated by the practitioner,
thanks to the qualitative aspect of emails. In other words,
this popularity is not a value coming out of the blue, but,
on the contrary, it is supported by the content of the emails:
By skimming the messages’ text, one can decide whether a
popular class is worth understanding for the task at hand.
Freenet: Figure 6 reports the popularity of Freenet packages,
as shown by Remail’s Package Explorer decorator.

I

Figure 6. Excerpt from Package Explorer: Freenet packages with popularity

It shows that the most popular package is freenet.node
(Point I), with classes discussed in more than 450 emails.

5http://mina.apache.org/
6http://freenetproject.org/

http://mina.apache.org/
http://freenetproject.org/


The second most discussed package is freenet.node.fcp, with
slightly more than 250 emails, while the other packages are
significantly less popular.

We investigate the most popular package: In the node
package, developers mainly discuss four entities: classes
Node (74 emails), PacketSender (61), and PeerNode (67),
and interface RequestClient (98). With a brief analysis of the
emails for the interface, we see that it was popular during
the first phases of Freenet development, but afterwards its
importance gradually faded. We focus on the other classes
that are still currently discussed:

Node: By looking at the distribution of the emails over
time, via the Emails View panel, we see (Figure 7) that the
large class Node has been very popular since the inception
of the project (i.e., year 2000). By inspecting the code, we
discover not only that it includes the main method from
which the Freenet system bootstraps, but also that it models
the node run by the user in the network. Since Freenet is a
peer-to-peer system, the user node has a crucial role for the
whole application and is essential for comprehending how
the software functions as a whole.

Figure 7. Excerpt from Emails View: emails recommended for class Node

PacketSender: This class implements packet sending
through the Freenet network. It has a general importance
in the system, and by reading one recommended email, we
understand that it is critical for a developer who must deal
with message handling: “Are you interested in implementing
message priorities? MessageItem and PacketSender are the
most relevant classes.” This message also reveals a hidden
coupling, not detectable by static analysis, with MessageItem.

PeerNode: The opening code comment of PeerNode states

that it “represents a peer we are connected to.” Therefore,
it plays a central role in the Freenet functioning and is
another important entry point for program comprehension.
Moreover, by reading among the most recent email threads
recommended by Remail (Figure 8, Point I), we discover
additional information that could not have been learned
by solely investigating the code. PeerNode is responsible
for implementing the Freenet Network Protocol (FNP) –
the communication protocol used in Freenet. A developer
who must change this protocol is required to “move all the
FNP related code from PeerNode to a new class, and have
PeerNode use the old code through this class. The new code
can then be added without touching FNP, and PeerNode
[can] choose which format to use for each peer.” By reading
the same thread, the developer interested in modifying FNP
would also discover the other two classes responsible for the
implementation of FNP: PacketTracker and SessionKey.

I

Figure 8. Emails View: recent threads recommended for PeerNode

To further evaluate the importance of these three classes in
the system, we analyzed them in terms of Design Flaws [13].
The detection strategies we use (see [15]) diagnose all the
three classes as affected by the Behavioral God Class [18]
design flaw, i.e., they tend to incorporate a disproportionately
large amount of intelligence. This reinforces the hypothesis
that they represent an important entry point for program
comprehension. Additionally, all the classes presents other
design flaws such as Brain Methods, Intensive Coupling,
and Shotgun Surgery. Due to space constraints we do not
analyze each design flaw, but refer the interested reader to
[13].

Mina: MINA is an application framework for supporting the
development of network applications. Within the project
documentation, developers offer a decomposition of the
system to introduce newcomers to its architecture. Figure 9
replicates this decomposition.

Mina
architecture

IO Handler

IO Session
IO Service

IO FilterChain

IO Filter
Remote

Peer

1,139 2,255 416 487 341Component
Popularity

Figure 9. Mina architecture: Main components and their popularity

With this decomposition in place, we compare it to the
popularity of its component. For each component (e.g., IO
Handler), we report the popularity of the corresponding class
(e.g., core.service.IOHandler). Only in the case of IO Filter



Chain, we sum the popularity of the interface IOFilterChain
and of its sole implementer DefaultIOFilterChain.

The popularity values depicted in the picture show how
the most discussed components clearly match the architecture
proposed by the developers. In fact, only a few other classes
reach such a popularity score: IOBuffer (541 emails), the
replacement of the java library class ByteBuffer, necessary
for writing on any IO Session; IOAcceptor (390 emails) and
IOConnector (347) used for starting a server and a client,
respectively; and ProtocolCodecFilter (1,010), a specialized
IO filter also detailed in the official decomposition. In
other words, we could have extracted an almost equivalent
decomposition simply by using quantitative data from emails.

On an unrelated note, we see how the number of emails
talking about the most popular classes is rather higher
compared to Freenet, even though the respective mailing
lists archive a similar total number of messages. This reflects
the different programming and communication habits between
the two development communities.

B. Software Evolution Analysis

Version control (or software configuration management–
SCM) systems offer historical information on the evolution
of the source code. They can be used to track changes in
source code artifact in order to detect whether a class is
stable or always morphing. For example, researchers have
successfully used change metrics to predict defects [4], [17].

We argue that, in system in which developers mainly
communicate in mailing lists (such as open source projects,
and distributed teams), emails might be used to complement
known information in order to better understand the relevance
of changes. The rationale is that classes that are not discussed
in the development mailing lists are likely to be more stable
and less prone to major modifications, since a substantial
change would require an agreement of the development team.

To investigate our hypothesis, we analyze the package util
in the Mina project. It presents 98 distinct commits in fifty
months, and discussions in the mailing list. It contains 17
classes, of which we manually inspected the complete history
in the SCM system and all the emails recommended. We
analyze the changes that occurred since the inception of the
mailing list, in 2006.

Figure 10 visualizes the results of our analysis. We
divide the time in one-month slots and fill them with the
occurred events. Grey boxes represent related emails, the
other boxes represent commits. Light blue boxes represent
class addition, white boxes represent minimal changes (e.g.,
author renaming, license change, reformatting), and red boxes
represent relevant changes that modified a class’ behavior.

The first thing we note is the small number of relevant
changes: Only 6 relevant changes over 98 commits. From
our hypothesis, we expected this behavior, since the mailing
list is silent on most of the classes. We note how there is
no relevant change in classes not mentioned in the mailing

Available-
PortFinder

Base64

CircularQueue

Concurrent-
HashSet

CopyOn-
WriteMap

Default-
ExceptionMonitor

ExceptionMonitor

ExpirationListener

ExpiringMap

IdentityHashSet

LazyInitialized-
CacheMap

LazyInitializer

Log4j-
XmlFormatter

MapBackedSet

NamePreserving-
Runnable

Synchronized-
Queue

Transform

2006 2007 2008 2009 2010

Related email thread Class additionRelevant change Trivial change

Figure 10. Package org.apache.mina.util: changes and discussions

list. Concerning the relevant changes, we see (circled in
Figure 10) how these happen close in time to discussion
related to the class. The only exception is IdentityHashSet,
where the related discussion happens after many months.

An analogous pattern is present in the Freenet system.
For example, the package crypt contains classes that used to
be discussed in the past of the project, but that have been
almost no discussed for two years. By analyzing the related
commits, we verify that they contain no relevant change.

From this scenario, we see how historical information
provided by emails might help in understanding where the
current, active, and relevant development is focused.

C. Expert finding

Program comprehension involves keeping up with who on
a distributed team is expert about specific code entities. Given
the complexity and the amount of changes in software, this
is a non-trivial task. Researchers have proposed a number of
approaches to recommend experts (e.g., [16], [20], [22]), most
of them based on authorship of code: The person committing
changes to an artifact has expertise in it. Emails recommended
by Remail also report the author (see Point II and III of
Figure 2). We argue that this information can be used to
extract both quantitative and qualitative information about the
expertise on discussed entities. As an example, we see how
Remail can be used to find an expert of class BookmarkItem.

We first selected the entity itself (cf. Figure 2, Point I),
which has 26 related emails. Then, in the Emails View (Point



II), we already see how Toseland wrote several emails on this
entity. This quantitative information suggests us his potential
class expertise. To confirm this belief, we select one of the
emails he wrote and we read it in Email Content View (Point
III). Thanks to the different colors used to distinguish the
quotation levels, we clearly read that Toseland, first, indicated
how BookmarkItem must be aggregated: “you should put
each BookmarkItem as a sub-fieldset, not a string”; then,
gave the rationale behind this behavior: “[to have] the ability
to easily add fields.” Without using SCM system data, but
simply with Remail, we easily found an expert of this entity.

As another example, we see how Remail complements
the expertise information we find in the SCM system. We
analyze the Mina class ExceptionMonitor. Table II reports
the SCM system commits involving this class, by date and
author. Only four developers committed on this class: They
are the exclusive experts from a SCM system point of view.

Revision Date Author
995,776 Oct 2010 elecharny
900,040 Jan 2010 elecharny
783,334 Jun 2009 elecharny
774,593 May 2009 elecharny
678,335 Jul 2008 mwebb
671,827 Jun 2008 jvermillard
576,217 Sep 2007 trustin
565,669 Aug 2007 trustin
555,855 Jul 2007 trustin
497,314 Jan 2007 trustin

Table II
Code commits involving org.apache.mina.util.ExceptionMonitor

I

II

Figure 11. Emails recommendend for mina.util.ExceptionMonitor

Figure 11 reports the emails related to ExceptionMonitor,
as recommended by Remail. The aforementioned committers
were all involved in discussions, in a moment in time close
to their activity on the class. For example, we see that Trustin
Lee (trustin, in commits) wrote emails in 2006 and worked
on the class up to 2007. In 2008, Mark Webb and Julien
Vermillard where both committing and discussing the class.
Currently Emmanuel Lecharny is the sole committer.

By reading the thread in Point I, we learn that other
developers designed the class, but are now no longer involved
in the implementation (e.g., Karasulu: “I think this was
something Trustin and I talked about while experimenting
with Monitors versus logging. [This class] was a bad idea
then and I think it is a bad idea now.”). At the same time, by
reading Point II, we see that Dave Irving is knowledgeable
about the functioning of the class: “an ExceptionMonitor
instance [. . . ] doesn’t swallow exceptions (or captures them
for relaying back to your test if you’re not running off the
main thread).” By using only the SCM system data, we would
have not been able to discover his expertise.

D. Recovering Additional Information

Official documentation, e.g., design documents, is regarded
by developers as “write-only media”, as it is difficult and
cumbersome to evolve along with the rest of the systems [14].
Moreover, not all the developers have the rights to modify it.
On the contrary, emails are easier to write, due to their less
formal nature, and can be written by non-developers. We
claim that recommended emails might contain complementary
information not available in code comments, or official
documentation, thus helping program comprehension.

We present the example of the class CircularQueue (CQ),
in the Mina system, which provides anecdotal evidence of
our hypothesis. The SCM system (as shown in Figure 10)
reports five commits on this class in the last months, thus
underlying a sort of evolution. However, from a previous
scenario we know that these changes are not relevant and the
class is almost frozen. For this reason, one would wonder
its real purpose, which components use this class, and why
it is stable. The only information provided by the class
comments and documentation is that CQ implements an
“unbounded circular queue based on array.” However, we can
read a recent thread titled “About CircularQueue”, among
those recommended by Remail as pertaining to CQ, to gain
additional information. From the emails we discover that this
class has a logical connection to ConcurrentLinkedQueue
(CLQ). Even though the latter “performs bad comparing to
synchronized [CQ] when the number of accessing threads are
very small”, developers decided to remove “all references to
the non-thread-safe [CQ] data structure, and replace it with a
[CLQ].” The reason is that “not only [CLQ] is a comparable
data structure, but it’s also thread safe, and tested.” Eventually,
we read that developers are considering to “remove the [CQ]
data structure from the code base” as it should only be used
by the core and not by framework users.

Thanks to this additional information, we learned what the
most important issues of the class are (i.e., not-thread-safe
and not well tested), which components use it (i.e., only
internal core classes), and why it has not been changed
significantly lately (i.e., it is probably going to be removed).



IV. Discussion

Limitations: The main limitations of our approach are
caused by the fact that it was validated only on two open-
source systems, and that the evidence is so far anecdotal.

For example, concerning the entry point analysis (cf.
Section III-A), in the studied systems we found that classes
are popular because they form the system core. Nevertheless,
artifacts in other systems might be popular in emails for
other reasons (e.g., because of their size, or because they
are subject to frequent changes); it would be necessary to
analyze whether these classes can also be considered as valid
entry points for comprehending a system.

Future work: We plan to perform a systematic evalu-
ation of how and whether emails can aid program compre-
hension tasks. For example, we plan to involve open-source
developers to evaluate Remail and learn from their opinion,
and to conduct a controlled experiment to compare Remail
with other tools that improve program comprehension.

Email archives are not the panacea: With massive amount
of data—even if useful—also comes information overload.
Our linking techniques are able to find emails related to the
chosen artifact, thus filtering much non-relevant information,
but large systems with a long history can archive thousands
of emails concerning a single artifact. In our study, we found
that the information about the email date, the aggregation in
threads, and visibility of the email subject at a glance, are
functional features to find searched information; however,
we plan to improve data mining by including new filters on
topics and emerging trends, and by linking to code changes
(e.g., to see emails close in time to the specified commit).

Finally, we plan to conduct an empirical study on the
correlation between email popularity and design flaws. In our
study, we found that Freenet flaws are related to popularity,
but we want to investigate whether this relation is stable in
other systems.

V. RelatedWork

This work builds on the lessons learned by presenting
and discussing our prototype of Remail at the SUITE 2010
Workshop [2]. Since then, thanks to the positive feedback
and suggestions received, we extensively expanded our work.
We improved the overall stability of Remail, added new
visualizations (such as the popularity decoration in the
Package Explorer) and ameliorated existing ones (e.g., by
including threads in the Emails View), and by adding MBox
files as an alternative, simple, and transparent data source.
In addition, in the present work, we illustrated how Remail
can be used to augment program comprehension.

An approach similar to ours, which includes external
artifacts in the development environment, has been devised
by Holmes and Begel [9]. They presented Deep Intellisense,
a Visual Studio IDE plugin that links a number of artifacts
(e.g., bug reports, e-mails, code changes) to source code
entities. It features three views: a structural view of the artifact

chosen, a view to represent people related to that artifact,
and a view to display all the related historical information
(e.g., checkins, or bug reports). As opposed to our approach,
Deep Intellisense always relies on external applications to
handle the visualization of different artifacts: For example,
when a user clicks on a bug, the native viewer is open. By
implementing Remail, we strive to give the users views that
are consistent with the development environment, in order
to avoid unnecessary context switches, and to allow more
interaction. For example, as our future work, we plan to allow
the developer to click on the content of an email to trigger
appropriate events in the IDE. This would not be possible by
relying on external viewers. In addition, Deep Intellisense
needs a specialized database with all the information modeled,
in order to use its implicit query system [24]. By using MBox
files, we removed the burden of such complex infrastructure
from users’ shoulders, thus lowering the bar for adopting
Remail in everyday development.

Hipkat offers an integrated approach to access information
stored in project archives [23]. Similarly to our approach, it
is an Eclipse plugin. The main difference resides on fact that
Hipkat requires an external server process to monitor sources,
to store them in a database, to identify links, and to reply
to requests sent by the client. While, in Remail, all these
operations are conducted in the client, since we strived to
implement our approach as fast, lightweight, and unobtrusive.
In addition, the users of Remail do not need to specify any
query for retrieving the relevant data, they simply choose
the entities, and emails are automatically recommended.

IBM Jazz7 offers a framework, built on top of Eclipse,
to support collaborative software development. It features
IM communication in the IDE, and uses the concept of
“work items” to track and coordinate development tasks and
workflows. Each work item is connected to other artifacts
(e.g., builds, defect reports, change sets, or source code
entities). Such work items have analogies with emails, even
though the latter might have a broader perspective. While
Jazz advises the use of a brand new technology, we decided
on harnessing the power of emails, a pre-existing popular
communication means successfully adopted by developers of
a vast majority of software projects. This allows developers to
take advantage of mailing lists that archive years of relevant
information about the development of software systems.

Mylyn offers the concept of “task context” that focuses
on automatically link all relevant artifacts to the task-at-
hand [11]. As for Remail, this system helps in reducing
information overload and easing the sharing of expertise.
However, as for the case of Jazz, it also requires an additional
technology to be used, thus it does not provide access to
differently archived data and requires a higher learning effort
by developers. At the same time, Remail and Mylyn can
coexist in the same IDE and provide complementary data.

7http://jazz.net/

http://jazz.net/


VI. Conclusion
We presented a new approach for program comprehension

based on email information. We implemented Remail, an
Eclipse plugin to integrate email communication. It enables
the connection between code artifacts and emails, within
the programming environment. By using code-to-emails
lightweight linking techniques, Remail allows the user to
easily retrieve discussion relevant to the chosen entities.
Remail revolves around two aspects:

1) Simplicity: Remail allows developers to take advantage
of email archives already present in their common email
clients and to easily import new archives via Markmail
or Mailman. Also, it lets practitioners find and read
relevant emails, for a chosen entity, with one click.

2) Integration: Remail smoothly integrates with email
clients: When Remail uses an archive of a client, it will
not interfere with its functioning, but, on the contrary,
will take advantage of the updates performed by the user
from the client, by updating its own data. In addition,
new archives imported by Remail can immediately also
be used by email clients. Also, Remail integrates with
the IDE: It has internal views to avoid context switches
and ease concurrent code and email inspection.

The main contribution of Remail is disclosing both
qualitative and quantitative information provided by email
archives, so that it can be used during software development
to improve program comprehension. We have shown how the
email information, as displayed by Remail, helps to find entry
points in an unknown system, understand software evolution,
identify experts, and complement missing documentation.
The main strength of Remail resides in the fact that it
recommends emails–discussions in a context. The context is
vital for users to verify the value of a recommendation.

Acknowledgements: The Swiss National Science foundation’s
support for the project “SOSYA” (SNF Project No. 132175).

References

[1] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.
Benchmarking lightweight techniques to link e-mails and
source code. In Proceedings of WCRE 2009 (16th IEEE
Working Conference on Reverse Engineering), pages 205–214.
IEEE CS, 2009.

[2] A. Bacchelli, M. Lanza, and V. Humpa. Towards integrating e-
mail communication in the IDE. In Proceedings of SUITE 2010
(2nd International Workshop on Search-driven Development:
Users, Infrastructure, Tools and Evaluation), pages 1–4, 2010.

[3] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and
source code artifacts. In Proceedings of ICSE 2010 (32nd
International Conference on Software Engineering), pages
375–384. ACM, 2010.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving defect
prediction using temporal features and non linear models. In
Proceedings of the International Workshop on Principles of
Software Evolution, pages 11–18. IEEE CS, 2007.

[5] T. A. Corbi. Program understanding: challenge for the 1990’s.
IBM System Journal, 28(2):294306, 1989.

[6] L. Erlikh. Leveraging legacy system dollars for e-business.
IT Professional, 2(3):17–23, 2000.

[7] K. Fogel. Producing Open Source Software. O’Reilly, 2005.
[8] T. Gleixner. The realtime preemption patch: Pragmatic

ignorance or a chance to collaborate? In Keynote of ECRTS
2010 (22nd Euromicro Conference on Real-Time Systems),
2010. http://lwn.net/Articles/397422/.

[9] R. Holmes and A. Begel. Deep Intellisense: a tool for
rehydrating evaporated information. In Proceedings of MSR
2008 (5th IEEE Working Conference on Mining Software
Repositories), pages 23–26. ACM, 2008.

[10] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E.
Hassan. Should I contribute to this discussion? In Proceedings
of MSR 2010, pages 181–190. IEEE, 2010.

[11] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for IDEs. In Proceedings AOSD 2005 (4th international
conference on Aspect-oriented software development), pages
159–168. ACM, 2005.

[12] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proceedings of
ICSE 2007, pages 344–353. IEEE CS, 2007.

[13] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[14] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of
ICSE 2006, pages 492–501. ACM, 2006.

[15] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of ICSM 2004 (20th
IEEE International Conference on Software Maintenance),
pages 350–359. IEEE Computer Society Press, 2004.

[16] A. Mockus and J. D. Herbsleb. Expertise Browser: a
quantitative approach to identifying expertise. In Proceedings
of ICSE 2002, pages 503–512, 2002.

[17] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction. In Proceedings of ICSE 2008, pages
181–190, 2008.

[18] A. Riel. Object-Oriented Design Heuristics. Addison-Wesley,
1996.

[19] M. P. Robillard, R. J. Walker, and T. Zimmermann. Recom-
mendation systems for software engineering. IEEE Software,
27(4):80–86, 2010.

[20] D. Schuler and T. Zimmermann. Mining usage expertise from
version archives. In Proceedings of MSR 2008, pages 121–124.
ACM, 2008.

[21] R. C. Seacord, D. Plakosh, , and G. A. Lewis. Modernizing
Legacy Systems: Software Technologies, Engineering Process
and Business Practices. Addison-Wesley, 2003.

[22] G. C. M. Thomas Fritz, Jingwen Ou and E. Murphy-Hill. A
degree-of-knowledge model to capture source code familiarity.
In Proceedings of ICSE 2010, pages 385–394. IEEE CS, 2010.

[23] D. Čubranić and G. C. Murphy. Hipikat: recommending
pertinent software development artifacts. In Proceedings of
ICSE 2003, pages 408–418, 2003.

[24] G. Venolia. Textual allusions to artifacts in software-related
repositories. In Proceedings of MSR 2006, pages 151–154.
ACM, 2006.

http://lwn.net/Articles/397422/

	Introduction
	REmail: Recommending Emails
	Data-collection Mechanism
	Recommendation Engine
	User Interface
	Implementation details

	Program comprehension through emails
	Entry points from class popularity in emails
	Software Evolution Analysis
	Expert finding
	Recovering Additional Information

	Discussion
	Related Work
	Conclusion
	References

