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Abstract An Application Programming Interface (API) provides a set of
functionalities to a developer with the aim of enabling reuse. APIs have been
investigated from di↵erent angles such as popularity usage and evolution to
get a better understanding of their various characteristics. For such studies,
software repositories are mined for API usage examples. However, many of the
mining algorithms used for such purposes do not take type information into
account. Thus making the results unreliable. In this paper, we aim to rectify
this by introducing fine-GRAPE, an approach that produces fine-grained API
usage information by taking advantage of type information while mining API
method invocations and annotation. By means of fine-GRAPE, we investigate
API usages from Java projects hosted on GitHub. We select five of the most
popular APIs across GitHub Java projects and collect historical API usage
information by mining both the release history of these APIs and the code
history of every project that uses them. We perform two case studies on the
resulting dataset. The first measures the lag time of each client. The second
investigates the percentage of used API features. In the first case we find that
for APIs that release more frequently clients are far less likely to upgrade to
a more recent version of the API as opposed to clients of APIs that release
infrequently. The second case study shows us that for most APIs there is a
small number of features that is actually used and most of these features relate
to those that have been introduced early in the APIs lifecycle.
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1 Introduction

An Application Programming Interface (API) is a set of functionalities pro-
vided by a third-party component (e.g., library and framework) that is made
available to software developers. APIs are extremely popular as they promote
reuse of existing software systems [1].

The research community has used API usage data for various purposes
such as measuring of popularity trends [2], charting API evolution [3], and
API usage recommendation systems [4].

For example, Xie et al. have developed a tool called MAPO wherein they
have attempted to mine API usage for the purpose of providing developers
API usage patterns [5,6]. Based on a developers’ need MAPO recommends
various code snippets mined from other open source projects. This is one of
the first systems wherein API usage recommendation leveraged open source
projects to provide code samples. Another example is the work by Lämmel et
al. wherein they mined data from Sourceforge and performed an API usage
analysis of Java clients. Based on the data that they collected they present
statistics on the percentage of an API that is used by clients.

One of the major drawbacks of the current approaches that investigate
APIs is that they heavily rely on API usage information (for example to derive
popularity, evolution, and usage patterns) that is approximate. In fact, one of
the modern techniques considers as “usage” information what can be gathered
from file imports (e.g., import in Java) and the occurrence of method names
in files.

This data is an approximation as there is no type checking to verify that
a method invocation truly does belong to the API in question and that the
imported libraries are used. Furthermore, information related to the version of
the API is not taken into account. Finally, previous work was based on small
sample sizes in terms of number of projects analyzed. This could result in an
inaccurate representation of the real world situation.

With the current work, we try to overcome the aforementioned issues by
devising fine-GRAPE (fine-GRained APi usage Extractor), an approach to
extract type-checked API method invocation information from Java programs
and we use it to collect detailed historical information on five APIs and how
their public methods are used over the course of their entire lifetime by 20,263
client projects.

In particular, we collect data from the open source software (OSS) reposito-
ries on GitHub. GitHub in recent years has become the most popular platform
for OSS developers, as it o↵ers distributed version control, a pull-based devel-
opment model, and social features [7]. We consider Java projects hosted on
GitHub that o↵er APIs and quantify their popularity among other projects
hosted on the same platform. We select 5 representative projects (from now on,
we call them only API s to avoid confusion with client projects) and analyze
their entire history to collect information on their usage. We get fine-grained
information about method calls using a custom type resolution that does not
require to compile the projects.
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The result is an extensive dataset for research on API usage. It is our hope
that our data collection approach and dataset not only will trigger further
research based on finer-grained and vast information, but also make it easier
to replicate studies and share analyses.

For example, with our dataset the following two studies can be conducted:
First, the evolution of the features of the API can be studied. An analysis of

the evolution can give an indication as to what has made the API popular. This
can be used to design and carry out studies on understanding what precisely
makes a certain API more popular than other APIs that o↵er a similar service.
Moreover, API evolution information gives an indication as to exactly at what
point of time the API became popular, thus it can be studied in coordination
with other events occurring to the project.

Second, a large set of API usage examples is a solid base for recommenda-
tion systems. One of the most e↵ective ways to learn about an API is by seeing
samples [8] of the code in actual use. By having a set of accurate API usages
at ones’ disposal, this task can be simplified and useful recommendations can
be made to the developer; similarly to what has been done, for example, with
Stack Overflow posts [9].

In our previous work titled “A dataset for API Usage” [10], we presented
our dataset along with a few details on the methodology used to mine the
data. In this paper, we go into more detail into the methodology of our mining
process and conduct two case studies on the collected data which make no use
of additional information.

The first case is used to display the wide range of version information that
we have at our disposal. This data is used to analyze the amount of time by
which a client of an API lags behind the latest version of the API. Also, the
version information is used to calculate as to what the most popular version
of an API is. This study can help us gain insights into the API upgrading
behavior of clients.

The second case showcases the type resolved method invocation data that
is present in our database. We use this to measure the popularity of the various
features provided by an API and based on this mark the parts of an API that
are used and those that are not. With this information an API developer can
see what parts of the API to focus on for maintenance and extension.

The first study provided initial evidence of a possible distinction between
upgrade behavior of clients of APIs that release frequently compared to those
that release infrequently. In the former case, we found that clients tend to
hang back and not upgrade immediately; whereas, in the latter case, clients
tend to upgrade to the latest version. The results of the second case study
highlight that only a small part of an API is used by clients. This finding
requires further investigation as there is a case to be made that many new
features that are being added to an API are not really being adopted by the
clients themselves.

This paper is organized as follows: Section 2 presents the approach that
has been applied to mine this data. For the ease of future users of this dataset
an overview of the dataset and some introductory statistics of it can be found
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in section 3. Section 4 presents the two case studies that we performed on
this dataset. In section 5 we describe the limitations of our approach and the
dataset itself. Section 6 concludes this article.

2 Approach

We present the 2-step approach that we use to collect fine-grained type-
resolved API usage information. (1) We collect data on project level API
usage from projects mining open source code hosting platforms (we target
such platforms due to the large number of projects they hosted) and use it
to rank APIs according to their popularity to select an interesting sample
of APIs to form our dataset; (2) apply our technique, fine-GRAPE, to gather
fine-grained type-based information on API usages and collect historical usage
data by traversing the history of each file of each API client.

2.1 Mining of coarse grained usage

In the construction of this dataset, we limit ourselves to the Java program-
ming language, one of the most popular programming languages currently in
use [11]. This reduces the types of programs that we can analyze, but has a
number of advantages: (1) Due to the popularity of Java there would be a
large source of API client projects available for analysis; (2) Java is a statically
typed language, thus making the collection of type-resolved API usages easier;
(3) it allows us to have a more defined focus and more thoroughly test and
refine fine-GRAPE Future work can be to extend it to other typed-languages,
such as C#.

To ease the collection of data regarding project dependencies on APIs,
we found it useful to focus on projects that use build automation tools. In
particular, we collect data from projects using Maven, one of the most popular
Java build tools [12]. Maven employs the use of a Project Object Model (POM)
files to describe all the dependencies and targets of a certain project. POM files
contain artifact ID and version of each project’s dependency, thus allowing us
to know exactly which APIs (and version) a project uses. The following is an
example of a POM file entry:

<dependency >

<groupId >junit</groupId >

<artifactId >junit </artifactId >

<version >4.8.2</version >

</dependency >

In the dependency tag from a sample POM file pictured above, we see
that the JUnit dependency is being declared. We find the APIs name in the
artifactId tag. The groupId tag generally contains the name of the organiza-
tion that has released the API, in this case it matches the artifactId. However,
there are other cases such as the JBoss-Logging API for which the groupID is
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org.jboss.logging and the artifactId is jboss-logging. The version of
JUnit to be included as a dependency is specified in the version tag and in
this case it is version 4.8.2.

2.2 Fine-grained API usage

To ensure that precise API usage information is collected, one has to reliably
link each method invocation or annotation usage to class in the API to which
it belongs. This can be achieved in five ways:

Text matching: This is one of the most frequently used techniques to mine
API usage. For example, it has been used in the investigation into API
popularity performed by Mileva et al. [2]. The underlying idea is to match
explicit imports and corresponding method invocations directly in the text
of source code files.

Bytecode analysis: Each Java file produces one or more class files when
compiled, which contain Java bytecode that is platform independent. An-
other technique to mine API usage is to parse byte code in these class
files to find all method invocations and annotation usages along with the
class to which they belong to. This approach guarantees accuracy as the
class files contain all information related to Java program in the Java file
in question.

Partial program analysis: Dagenais et al. have created an Eclipse plugin
called Partial Program Analysis (PPA) [13]. This plugin parses incomplete
files and recovers type bindings on method invocations and annotations,
thus identifying the API class to which a certain API usage belongs.

Dynamic analysis: Dynamic analysis is a process by which the execution
trace of a program is captured as it is being executed. This can be a
reliable method of determining the invocation sequence in a program as it
can even handle the case where type of an object is decided at runtime.
Performing dynamic analysis has the potential of being highly accurate as
the invocations in the trace are type-resolved being recovered from running
of bytecode.

AST analysis: Syntactically correct Java files can be transformed into an
Abstract Syntax Tree (AST). An AST is a tree based representation of
code where each variable declaration, statement, or invocation forms a
node of the tree. This AST can be parsed by using a standard Java AST
parser. The Java AST parser can also recover type based information at
each step, which aids in ensuring accuracy when it comes to making a
connection between an API invocation and the class it belongs to.

All five of the aforementioned approaches can be applied for the purpose
of collecting API usage data, but come with di↵erent benefits and drawbacks.

The text-matching-based approach proves especially problematic in the
case of imported API classes that share method names, because method invo-
cations may not be disambiguated without type-information. Although some
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analysis tools used in dynamic languages [14] handle these cases through the
notion of ‘candidate’ classes, this approach is sub-optimal for typed languages
where more precise information is available.

The bytecode analysis approach is more precise, as bytecode is guaranteed
to have the most accurate information, but it has two di↵erent issues:

1. Processing class files requires these files to be available, which, in turn,
requires being able to compile the Java sources and, typically, the whole
project. Even though all the projects under consideration use Maven for
the purpose of building, this does not guarantee that they can be built. If a
project is not built, then the class files associated with this project cannot
be analyzed, thus resulting in a dropped project.

2. To analyze the history of method invocations it is necessary to checkout
each version of every file in a project and analyze it. However, checking out
every version of a file and then building the project can be problematic as
there would be an ultra-large number of project builds to be performed.
In addition to the time costs, there would still be no warranty that data
would not be lost due build failures.

The partial program analysis approach has been extensively tested by Da-
genais et al. [13] to show that method invocations can be type resolved in
incomplete Java files. This is a massive advantage as it implies that even with-
out building each API client one can still conduct a thorough analysis of the
usage of an API artifact. However, the implementation of this technique relies
on Eclipse context, thus all parsing and type resolution of Java files can only
be done in the context of an Eclipse plugin. This requires that each and every
Java file is imported into an Eclipse workspace before it can be analyzed. This
hinders the scalability of this approach to large number of projects.

Dynamic analysis techniques result in an accurate set of type resolved
invocations. However, they require the execution of the code to acquire a trace.
This is a limitation as not all client code might be runnable. An alternative
would be to have a su�cient set of tests that would execute all parts of the
program so that traces can be obtained. This too might be unfeasible as many
projects may not have a proper test suite[15]. Finally, this technique would
also su↵er from the same limitations as the bytecode analysis technique; where
analyzing every version of every file would require a large e↵ort.

2.3 fine-GRAPE

Due to the various issues related to first four techniques, we deem the most
suitable technique to be the AST based one. This technique utilizes the JDT
Java AST Parser [16], i.e., the parser used in the Eclipse IDE for continuous
compilation in background. This parser handles partial compilation: When it
receives in input a source code file and a Java Archive (JAR) file with possibly
imported libraries, it is capable of resolving the type of methods invocation
and annotations of everything defined in the code file or in the provided jar.
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This will allow us to parse standalone files, and even incomplete files in a quick
enough way such that we can collect data from a large number of files and
their histories in a time e↵ective manner.

We created fine-GRAPE that, using the aforementioned AST parsing tech-
nique, collects the entire history of usage of API artifacts over di↵erent ver-
sions. In practice, we downloaded all the JAR files corresponding to the releases
of the API projects chosen. Although this has been done manually in the study
presented here, this process of downloading the JAR files has been automated
in the current version for the ease of the user. Then, fine-GRAPE uses Git
to obtain the history of each file in the client projects and runs on each file
retrieved from the repository and the JAR with the corresponding version of
the API that the client project declares in Maven at the time of the commit of
the file. The fine-GRAPE leverages the visitor pattern that is provided by the
JDT Java AST parser to visit all nodes in the AST of a source code file of the
type method invocation or annotation. These nodes are type resolved and are
stored in a temporary data structure while we parse all files associated with
one client project. This results in accurate type-resolved method invocation
references for the considered client projects through their whole history. Once
the parsing is done for all the files and their respective histories in the client,
all the data that has been collected is transformed into a relational database
model and is written to the database.

An API usage dataset can also contain the information on the method,
annotations, and classes that are present in every version of every API for
which usage data has been gathered such that any kind of complex analysis
can be performed. In the previous steps we have already downloaded the API
JAR files for each version of the API that is used by a client. These JAR files
are made up of compiled class files, where each class file relates to one Java
source code file. fine-GRAPE then analyzes these JAR files with the help of
the bytecode analysis tool ASM [17], and for each file the method, class and
annotation declarations are extracted.

2.4 Scalability of the approach

The approach that we have outlined runs on a large number of API client
projects in a short amount of time. In its most recent state, all parts of the
process are completely automated, thus needing a minimum of manual inter-
vention. A user of the fine-GRAPE tool has to just specify the API which
is to be mined, and this will result in a database that contains type-resolved
invocations made to an API.

We benchmarked the amount of time it takes to process a single file. To run
our benchmark, we used a server with two Intel Xeon E5-2643 V2 processors.
Each processor consists of 6 cores and runs at a clock speed of 3.5 GHz. We
ran our benchmark on 2,045 files from 20 client projects. To get an accurate
picture, this benchmark was repeated 10 times. Based on this we found that
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the average amount of time spent on a single file was 165 milliseconds, the
median was 31 milliseconds, the maximum was 1,815 ms for a large file.

2.5 Comparison to existing techniques

Previous work mined API usage examples, for example in the context of code
completion, code recommendation, and bug finding. We see how the most
representative of these mining approaches implemented in the past relate to
the one we present here.

One of the more popular applications of API usage datasets is in the cre-
ation of code recommendation tools. In this field one of the more known tools
is MAPO by Xie et al. [5,6]. The goal of MAPO is to recommend relevant code
samples to developers. MAPO runs its analyzer on source code files from open
source repositories. MAPO uses the JDT compiler to compile a file and recover
type-resolved API usages. These fine-grained API usages are then clustered
using the frequent itemset mining technique [18]. In more recent developments
tools such as UP-Miner [19] have been developed to mine high coverage us-
age patterns from open source repositories by using multiple clustering steps.
Di↵erently from fine-GRAPE, none of the approaches used here take version
of the various APIs used into account. Moreover, our approach as opposed
to theirs does not require the building of the files and has no need for all
dependencies to the resolved to run.

Mining of API usage patterns has also been done to detect bugs by finding
erroneous usage patterns. To this end, researchers developed tools such as
Dynamine [20], JADET [21], Alattin [22] and PR-Miner [23]. All these tools
rely on the same mining technique i.e., frequent itemset mining [18]. The idea
behind this technique is that statements that occur frequently together can be
considered to be a usage pattern. This technique can result in a high number
of false positives, due to the lack of type information. fine-GRAPE tackles this
problem by taking advantage of type information.

The earliest technique that was employed in mining API usage was used by
the tool CodeWeb [24] that was developed by Amir Michail. More recently it
has been employed in the tool Sourcerer [25] as well. This technique employs
a data mining technique that is called generalized association rule mining.
An association rule is of the form (

V
x✏X

x) ) (
V

y✏Y

y). This implies that
for an event x that takes place, then an event y will also take place with a
certain confidence interval. The generalized association rule takes not just this
into account but also takes a node’s descendants into account as well. These
descendants represent specializations of that node. This allows this technique
to take class hierarchies into account while mining reuse patterns. However,
just like frequent itemset mining this can result in false positives due to the
lack of type information.

Recently, Moreno et al. [26] presented a technique to mine API usages using
type resolved ASTs. Di↵erently from fine-GRAPE, the approach they propose
builds the code of each client to retrieve type resolved ASTs. As previously
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mentioned in the context of bytecode analysis, this could result in the loss of
data, as some client projects may not build, and low scalability.

3 A Dataset for API Usage

Using fine-GRAPE we build a large dataset of usage of popular APIs. Our
dataset is constructed using data obtained from the open source code hosting
platform GitHub. GitHub stores more than 10 million repositories [27] written
in di↵erent languages and using a diverse set of build automation tools and
library management systems.

3.1 Coarse-grained API usage: The most popular APIs

To determine the popularity of APIs on a coarse-grained level (i.e., project
level), we parse POM files for all GitHub based Java projects that use Maven
(ca. 42,000). The POM files were found in the master branch of approximately
250,000 active Java projects that are hosted on GitHub.1 Figure 1 shows a
partial view of the results with the 20 most popular APIs in terms of how
many GitHub projects depend on them.

This is in-line with a previous analysis of this type published by Primat
as a blog post [28]. Interestingly, our results show that JUnit is by far the
most popular, while Primat’s results report that JUnit is just as popular as
SLF4J. We speculate that this discrepancy can be caused by the di↵erent
sampling approach (he sampled 10,000 projects on GitHub, while we sampled
about 42,000 on GitHub), further research can be conducted to investigate
this aspect more in detail.

3.2 Selected APIs

We used our coarse-grained analysis of popularity as a first step to select API
projects to populate our database. To ensure that the selected API projects
o↵er rich information on API usage and its evolution, rather than just sporadic
use by a small number of projects, we consider projects with the following fea-
ture: (1) have a broad popularity for their public APIs (i.e., they are in the
top 1% of projects by the number of client projects), (2) have an established
and reasonably large code base (i.e., they have at least 150 classes in their his-
tory), (3) and are evolved and maintained (i.e., they have at least 10 commits
per week in their lifetime). Based on these characteristics, we eventually select
the five APIs summarized in Table 1, namely Spring, Hibernate, Guava, and
Guice and Easymock. We decide to remove JUnit, being an outlier in popular-
ity and having a small code base that does not respect our requirements. We
keep Easymock, despite its small number of classes and relatively low amount

1 As marked by GHTorrent [27] in September 2014
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Fig. 1 Popularity of APIs referenced on Github

of activity in it’s repository (ca. 4 commits per week) to add variety to our
sample. The chosen APIs are used by clients in di↵erent ways: e.g., Guice
clients use it through annotations, while Guava clients instantiate an instance
of a Guava class and then interact with it through method invocations.

In the following, a brief explanation of the domain of each API:

1. Guava is the new name of the original Google collections and Google
commons APIs. It provides immutable collections, new collectsion such
as multiset and multimaps and finally some new collection utilities that
are not provided in the Java SDK. Guava’s collections can be accessed
by method invocations on instantiated instances of the classes built into
Guava.

2. Guice is a dependency injection library provided by Google. Dependency
injection is a design pattern that separates behavioral specification and
dependency resolution. Guice allows developers to inject dependencies in
their applications with the usage of annotations.
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3. Spring is a framework that provides an Inversion of Control(IoC) con-
tainer. This allows developers to access Java objects with the help of re-
flection. The Spring framework comprises of a lot of sub projects, however
we choose to focus on just the spring-core, spring-context and spring-test
modules due to their relatively high popularity. The features provided by
Spring are accessed in a mixture of method invocations and annotations.

4. Hibernate Object Relational Mapping (ORM) provides a framework
for mapping an object oriented domain to a relational database domain. It
is made up of a number of components that can be used, however we focus
on just two of the more popular one i.e., hibernate-core and hibernate-
entity manager. Hibernate exposes its APIs as a set of method invocations
that can be made on the classes defined by Hibernate.

5. Easymock is a testing framework that allows for the mocking of Java
objects during testing. Easymock exposes its API to developers by way of
both annotations and method invocations.

Table 1 Subject APIs

Unique Entities
API & GitHub repo Inception Releases

Classes Methods
Guava
google/guava

Apr 2010 18 2,310 14,828

Guice
google/guice

Jun 2007 8 319 1,999

Spring
spring-framework

Feb 2007 40 5,376 41,948

Hibernate
hibernate/hibernate-orm

Nov 2008 77 2,037 11,625

EasyMock
easymock/easymock

Feb 2006 14 102 623

3.3 Data Organization

We apply the approach outlined in Section 2 and store all the data collected
from all the client GitHub projects and API projects in a relational database,
precisely PostgreSQL [29]. We have chosen a relational database because the
usage information that we collect can be naturally expressed in forms of rela-
tions among the entities. Also we can leverage SQL functionalities to perform
some initial analysis and data pruning.

Figure 2 shows the database schema for our dataset. On the one hand we
have information for each client project: The Projects table is the start-
ing point and stores a project’s name and its unique ID. Connected to this we
have ProjectDependency table, which stores information collected from the
Maven POM files about the project’s dependencies. We use a date commit

attribute to trace when a project starts including a certain dependency in its

https://github.com/google/guava
https://github.com/google/guice
https://github.com/spring-projects/spring-framework
https://github.com/hibernate/hibernate-orm
https://github.com/easymock/easymock
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ProjectDependency
pd_id INT

name VARCHAR(45)

version VARCHAR(45)

date_commit DATE

pr_id INT

Indexes

Projects
pr_id INT

project_name VARCHAR(45)

Indexes

Classes
cl_id INT

class_name VARCHAR(45)

pr_id INT

Indexes

Class_history
ch_id INT

change_date DATE

author_name VARCHAR(45)

log_message VARCHAR(45)

actual_file LONGTEXT

cl_id INT

Indexes

Method_invocation
mi_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Annotation
an_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Api
api_id INT

api_name VARCHAR(45)

Indexes

Api_version
v_id INT

version VARCHAR(45)

date_created DATE

api_id INT

Indexes

Api_class
c_id INT

package_name VARCHAR(45)

class_name VARCHAR(45)

is_deprecated BOOLEAN

v_id INT

Indexes

Api_method
m_id INT

method_name VARCHAR(45)

is_deprecated VARCHAR(45)

c_id INT

Indexes

Fig. 2 Database Schema For The Fine-grained API Usage Dataset

history. The Classes table contains one row per each uniquely named class
in the project; in the table Class history we store the di↵erent versions of
a class (including its textual content, actual file) and connect it to the ta-
bles Method invocation and Annotation where information about API
usages are stored. On the other hand, the database stores information about
API projects, in the tables prefixed with Api. The starting point is the table
Api that stores the project name and it is connected to all its versions (table
Api version, which also stores the date of creation), which are in turn con-
nected classes (Api class) and their methods (Api method) that also store
information about deprecation. Note that in the case of annotations we do not
really collect them in a separate table as annotations are defined as classes in
Java.

A coarse-grained connection between a client and an API is done with a
SQL query on the tables ProjectDependency, Api and Api version. The
finer-grained connection is obtained by also joiningMethod invocation/Annotation

and Api class on parent class names & Method invocation/Annotation

and Api method on method names.
The full dataset is available as a PostgreSQL data dump on FigShare [30],

under the CC-BY license. For platform limitations on the file size the dump
has been split in various tar.gz compressed files, for a total download size of
51.7 GB. The dataset uncompressed requires 62.3 GB of disk space.

3.4 Introductory Statistics

Table 2 shows an introductory view about the collected usage data. In the case
of Guava for example, even though version 18 is the latest (see Table 1), version
14.0.1 is the most popular among clients. APIs such as Spring, Hibernate and
Guice predominantly expose their APIs as annotations, however we see also
a large use of the methods they expose. The earliest usages of Easymock
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and Guice are outliers as GitHub as a platform was launched in 2008, thus
the repositories that refer to these APIs were moved to GitHub as existing
projects.

Table 2 Introductory usage statistics

Most popular Usage across history
API

release Invocations Annotations
Guava 14.0.1 1,148,412 —
Guice 3.0 59,097 48,945
Spring 3.1.1 19,894 40,525
Hibernate 3.6 196,169 16,259
EasyMock 3.0 38,523 —

3.5 Comparison to existing datasets

The work of Lämmel et al. [31] is the closest to the dataset we created with
fine-GRAPE. They target open source Java projects hosted on the Sourceforge
platform and their API usage mining method relies on type resolved ASTs.
To acquire these type resolved ASTs they build the APIs client projects and
resolve all of its dependencies. This dataset contains a total of 6,286 client
projects that have been analyzed and the invocations for 69 distinct APIs
have been identified.

Our dataset as well as that of Lämmel et al. target Java based projects,
though the clients that have been analyzed during the construction of our
dataset were acquired from GitHub as opposed to Sourceforge. Our approach
also relies on type resolved Java ASTs, but we do not build the client projects
as fine-GRAPE is based on a technique able to resolve parsing of a standalone
Java source file. In addition, the dataset by Lämmel et al. only analyzes the
latest build. In terms of size this dataset is comprised of usage information
gleaned from 20,263 projects as opposed to the 6,286 projects that make up
the Lämmel et al. dataset. However, this dataset contains information on only
5 APIs whereas Lämmel et al. identified usages from 69 APIs.

4 Case studies

We present two case studies to showcase the value of our dataset and to provide
examples for others to use it. We focus on case studies that require minimal
processing of the data and are just on basic queries to our dataset.

4.1 Case 1: Do clients of APIs migrate to a new version of the API?

As with other software systems, APIs also evolve over time. A newer version
may replace an old functionality with a new one, may introduce a completely
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API Version: 7
Release Date: August 2010

API Version: 8
Release Date: October 2010

Client Code
Commit Date: November 2010
Version Used: 7

Lag Time
API Timeline

Client Timeline

Fig. 3 An example of the lag time metric inspired by McDonnell et al. [32]

new functionality, or may fix a bug in an existing functionality. Some infamous
APIs, such as Apache Commons-IO, are stagnating since long time without
any major changes taking place, but to build our API dataset we took care of
selecting APIs that are under active development, so that we could use it to
analyze as to whether clients react to a newer version of an API.

4.1.1 Methodology

We use the lag time metric, as previously defined by McDonnell et al. [32], to
determine the amount of time a client is behind the latest release of an API
that it is using. Lag time is defined as the amount of time elapsed between a
client’s API reference and the release date of the latest version. A client lags
if it uses an old version of an API when a newer version has already been
released. For example, in Figure 3, client uses API version 7 despite version
8 being already released. The time di↵erence between the client committing
code using an older version and the release date of a newer version of the API
is measured as the lag time.

In practice, we consider the commit date of each method invocation (this
is done by performing a join on the method invocation and class history

tables), determine the version of the API that was being used by the client at
the time of the commit (the project dependency table contains information
on the versions of the API being used by the client and the date at which the
usage of a certain version was employed), then consider the release date of the
latest version of the API that existed at the time of the commit (this data can
be obtained form the api version table in the database), and finally combine
this information to calculate the lag time for each reference to the API and
plot the probability density.

Lag time can indicate how far a project is at the time of usage of an API
artifact, but it does not give a complete picture of the most recent state of
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all the clients using an API. To this end, we complement lag time analysis
with the analysis of the most popular versions of each API, based on the
latest snapshot of each client of the API (we achieve this by querying the
project dependency table to get the latest information on clients).

4.1.2 Results

Results are summarized in four figures. Figure 4 shows the probability density
of lag time in days, as measured from API clients, and Figure 5 shows the
distribution of this lag time. Figure 5 shows frequency of adoption of specific
releases: the three most popular ones, the latest release (available at the cre-
ation of this dataset), and all the other releases. Table 3 further specify the
dates in which these releases were made public and provides absolute numbers.
Finally, Figure 7 depicts the frequency and number of releases per API. The
data we have ranges from 2004 to 2014, however for space reasons we only
depict the range 2009 to 2014. Each year is divided into 3 slots of 4 month
periods, and the number of releases in each of these periods is depicted by the
size of the black circle.
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Fig. 4 Probability density of lag time in days, by API

Guava. In the case of the 3,013 Guava clients on GitHub the lag time varies
between 1 day and 206 days. The median lag time for these projects is 67
days. The average amount of time a project lags behind the latest release
is 72 days. Figure 4 shows the cumulative distribution of lag time across
all clients. Since Guava generally releases 5 versions on average per year,
it is not entirely implausible that some clients may be one or two versions
behind at the time of usage of an API artifact.
Although the latest (as of September 2014) version of Guava is 18, the most
popular one is 14 with almost one third of the clients using this version
(as shown in Figure 5). Despite 4 versions being released after version 14
none of them figure in the top 5 of most popular versions. Version 18 has
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Fig. 5 Proportion of release adoption, split in the 3 most popular, the latest, and all the
other releases, by API

Table 3 Publication date, by API, of the 3 most popular and latest releases, sorted by the
number of their clients

API Release Release Date Num of clients (%)
14 03-2013 868 (29%)
13 08-2012 557 (19%)
11 02-2012 291 (10%)

Guava

18 08-2014 41 (1%)
3.1.1 02-2012 2,013 (14%)
3.0.5 10-2010 1,602 (11%)
3.1.0 12-2011 1,489 (10%)

Spring

4.1.0 10-2014 30 (0.2%)
3.6.10 02-2012 376 (6%)
4.1.9 12-2012 352 (6%)
3.3.2 06-2009 288 (5%)

Hibernate

4.3.6 07-2014 32 (0.5%)
3.0.0 03-2011 536 (83%)
2.0.0 07-2009 53 (8%)
1.0.0 05-2009 14 (2%)

Guice

4.0.0-b4 03-2014 3 (0.5%)
3.0.0 05-2010 211 (33%)
3.1.0 11-2011 190 (29%)
2.5.2 09-2009 55 (9%)

Easymock

3.2.0 07-2013 42 (6%)

been adopted by very few clients (41 out of 3,013). None of the other newer
versions (16 and 17) make it in the top 5 either.

Spring. Spring clients lag behind the latest release up to a maximum of 304
days. The median lag time is 33 days and the first quartile is 15 days. The
third quartile of the distribution is 60 days. The average amount of lag
time for the usages of various API artifacts is 50 days. Spring is a relatively
active API and releases an average of 7 versions (including minor versions
and revisions) per year (Figure 7).
At the time of collection of this data, the Spring API had just released
version 4.1.0 and only a small portion (30) of projects have adopted it. The
most popular version is 3.1.1 (2,013 projects) as is depicted in Figure 5.
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Fig. 7 Release frequency for each API from 2009 (the dataset covers from 2004)

We see that despite the major version 4 of the Spring API being released in
December 2013, the most popular major version remains 3. In our dataset,
344 projects still use version 2 of the API and 12 use version 1.

Hibernate. The maximum lag time observed over all the usages of Hiber-
nate artifacts is 271 days. The median lag time is 18 days, and the first
quartile is just 10 days. The third quartile is also just 26 days. The average



18 Anand Ashok Sawant, Alberto Bacchelli

lag time over all the invocations is 19 days. We see in Figure 4 that most
invocations to Hibernate API do not lag behind the latest release consider-
ably, especially in relation to the other APIs, although a few outliers exist.
Hibernate releases 17 versions (including minor versions and revisions) per
year (Figure 7).
Version 4.3.6 of Hibernate is the latest release that available on Maven
central at the dataset creation time. A very small portion of projects (32)
use this version, and the most popular version is version 3.6.10, i.e., the
last release with major version 3. We see that a large number of clients have
migrated to early versions of major version 4. For instance, version 4.1.9
is almost (352 projects versus 376 projects) as popular as version 3.6.10
(shown in Figure 5). Interestingly, in the case of Hibernate, from our data
we see that there is not a clearly dominant version as all the other versions
of Hibernate make up about three fourths of the current usage statistics.

Guice. Among all usages of the Guice API, the largest lag time is 852 days.
The median lag time is 265 days and the first quartile of the distribution is
80 days. The average of all the lag times is 338 days. The third quartile is
551 days, showing that a lot of projects have a very high lag time. Figure 4
shows the cumulative distribution of lag times across all Guice clients.
Guice is a young API and, relatively to the other APIs, releases are few
and far between (10 releases over 6 years, with no releases on 2010 or 2012,
Figure 7).
The latest version of Guice that has been released, before the construction
of our dataset, is the fourth beta of version 4 (September 2014). Version
3 is unequivocally the most adopted version of Guice, as seen in Figure 5.
This version was released in March of 2011 and since then there have been
betas for version 4 released in 2013 and 2014. We speculate that this release
policy may have lead to most of the clients sticking to an older version and
preferring not to transition to a beta version.

Easymock. Clients of Easymock display a maximum, median, and average
lag time of 607, 280, and 268 days, respectively. The first quartile and
third quartile in the distribution are 120 and 393 days, respectively. Fig-
ure 4 shows the large number of projects that have a large amount of lag,
relatively to the analyzed projects. Easymock is a small API, which had
12 releases, after the first, over 10 years (Figure 7).
The most recent version of Easymock is 3.3.1, released in January 2015.
However, in our dataset we record use of neither that version nor the pre-
vious one (3.3.0). The latest used version is 3.2.0, released in July 2013,
with 42 clients. Versions 3.0.0 and 3.1.0 are the most popular (211 and
190 clients) in our dataset, as seen in Figure 5. Version 2.5.2 and 2.4.0 also
figure in the top three in terms of popularity, despite being released in 2009
and 2008.
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4.1.3 Discussion

Our analysis lets emerge an interesting relation between the frequency of re-
leases of an API and the behavior of its clients. By considering the data sum-
marized in Figure 7, we can clearly distinguish two classes of APIs: ‘frequent
releaser’ APIs (Guava, Hibernate and Spring) and ‘non-frequent releaser’ APIs
(Guice and Easymock).

For all the APIs under consideration we see that there is a tendency for
clients to hang back and to not upgrade to the most recent version. This
is especially apparent in the case of the ‘frequent releaser’ APIs Guava and
Spring: For these APIs, the older versions are far more popular and are still in
use. In the case of Hibernate, we cannot get an accurate picture of the number
of clients willing to transition because the version popularity statistics are
quite fractured. This is a direct consequence of the large number of releases
that take place every year.

For Guice and Easymock (‘non-frequent releaser’ APIs), we see that the
latest version is not popular. However, for Guice the latest version is a beta
and not an o�cial release, thus we do not expect it to be high in popularity.
In the case of Easymock, we see that the latest version (i.e., 3.3.1) and the
one preceding that (i.e., 3.3.0) are not at all be used. In general, we do see
that most clients of ‘non-frequent releaser’ APIs use a more recent version
compared to clients of ‘frequent releaser’ APIs.

By looking at Figures 4 and 6, we also notice how the lag time of ‘fre-
quent releaser’ APIs’ clients is significantly lower than of ‘non-frequent re-
leaser’ APIs’ clients. This relation may have di↵erent causes: For example,
‘non-frequent releaser’ APIs’ clients may be less used to update the libraries
they use to more recent versions, they may also be less prone to change the
parts of their code that call third-party libraries, or code that calls APIs
that have non-frequent release policy may be more di�cult to update. Testing
these hypothesis goes beyond the scope of this paper, but with our dataset
researchers can do so to a significant extent. Moreover, using fine-GRAPE,
information about more APIs can be collected to verify whether the afore-
mentioned relations hold with statistically significant samples.

4.2 Case 2: How much of an API is broadly used?

Many APIs are under constant development and maintenance. Some API pro-
ducers do this to evolve features over time and improve the architecture of the
API; others try to introduce new features that were previously not present.
All in all, many changes take place in APIs over time [33]. Here we analyze
which the features (methods and annotations) introduced by API developers
are taken on board by the clients of these APIs.

This analysis is particularly important for developers or maintainers to
know whether their e↵orts are useful and to decide to allocate more resources
(e.g., testing, refactoring, performance improvement) in more used parts of
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their API, as resulting returns on investment may be greater. Moreover, API
users may have more interest in reusing popular API features, as they are
probably better tested through users [34].

4.2.1 Methodology

For each of the APIs, we have a list of features in the api method and
api class tables [30]. We also have the usage data of all features per API
that has been accumulated from the clients in the method invocation and
annotation tables. Based on this, we can mark features of the API have
been used by clients. We can also count how many clients use a specific fea-
ture, thus classifying each feature as: (1) hotspot, in the top 15% of features
in term of usage; (2) neutral, features that have been used once or more but
not in the top 15% and (3) coldspot, if not used by any client. This is the same
classification used by Thummalapenta and Xie [34] in a similar study (based
on a di↵erent approach) on the usage of frameworks’ features.

To see which used features were introduced early in an APIs lifetime, we can
use the api version table to augment the date collected above with accurate
version information per feature; then, for each of the used features, we see
which version is the lowest wherein that feature has been introduced.

4.2.2 Results

The overall results for our analysis are summarized in Figures 8, 9, and 10.
The first shows a percentage breakdown of usages of API features (left-hand
side) and classes (right-hand side); the second and third report the probability
distribution of the logarithm of the number of clients per API features, for
‘non-frequent releaser’ APIs and ‘frequent releaser’ APIs, respectively.

Generally, we see that the proportion of used features is never higher than
20% (Figure 8) and that the number of clients that use the features has a
heavily right skewed distribution, which is slightly flattened by considering
the logarithm (Figures 9 and 10). Moreover, we do not see a special behavior
in this context of clients of ‘non-frequent releaser’ APIs vs. clients of ‘frequent
releaser’ APIs.

In the following, we present the breakdown of the usage based on the
definitions above.

Guava. Only 9.6% of the methods in Guava are ever used; in absolute num-
bers, out of 14,828 unique public methods over 18 Guava releases, only
1,425 methods are ever used. Looking at the used methods, we find that
214 methods can be classified as hotspots. The rest (1,211) are classi-
fied as neutral spots. The most popular method from the Guava API is
newArrayList from the class com.google.common.collect.Lists class
and it has 986 clients using it.
Guava provides 2,310 unique classes over 18 versions. We see that only 235
(10%) of these are ever used by at least client. Furthermore, only 35 of
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these classes can be called hotspots in the API. A further 200 classes are
classified as neutral. And we can classify a total of 2,075 classes as coldspots
as they are never used. The most popular class is used 1,097 times and it
is com.google.common.collect.Lists.
With Guava we see that 89.4% of the usages by clients of Guava relate
to features that have been introduced in version 3 that was released in
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April 2010. Following which 7% of the usages relate to features that were
introduced in version 10 that was released in October 2011.

Spring. Out of the Spring core, context and test projects, we see that 7.4%
of the features are used over the 40 releases of the API. A total of 840
features have been used out of the 11,315 features in the system. There are
126 features that can be classified as hotspots. Consequently, there are 714
features classified as neutral. The most popular feature is addAttribute

from the class org.springframework.ui.Model and has been used 968
clients.
The Spring API provides a total of 1,999 unique classes. Out of these
there are only 319 classes that are used by any of the clients of the Spring
API. We can classify 48 of these classes as hotspot classes and the other
271 can be classified as neutral. We classify 1,680 classes as coldspots as
they are never used. The most popular class has 2,417 clients and it is
org.springframework.stereotype.Controller.
Looking deeper, we see that almost 96% of the features of Spring that
are used by clients are those introduced in Spring version 3.0.0 that was
released in December 2009.

Hibernate. From the Hibernate core and entitymanager projects we see that
only 1.8% of the features are used. 756 out of the 41,948 unique public
features provided over 77 versions of Hibernate have been used by clients
in GitHub. Of these, 114 features that can be classified as hotspots and a
further 642 features can be classified as neutral. The getCurrentSession

method from the class org.hibernate.SessionFactory is the most pop-
ular feature, used by 618 clients.
Hibernate is made up of 5,376 unique classes. Out of these only 245 classes
are used by clients. We can classify 37 of these classes as hotspots. The
rest 208 classes are classified as neutral. We find that Hibernate has 5,131
coldspot classes. The most popular class is org.hibernate.Session with
917 clients using it.
In the case of Hibernate over 82% of the features that have been used
were introduced in version 3.3.1 released in September 2008 and 17% of
the features were introduced in 3.3.0.SP1 released in August 2008.

Guice. Out of the unique 11,625 features presented by Guice, we see that 1.2%
(138) of the features are used by the clients of Guice. There are 21 features
that are marked as being hotspots, 117 features marked as being neutral,
and 11,487 classified as coldspots. The most popular provided by the Guice
API is createInjector from class com.google.inject.Guice and is
used by 424 clients.
The Guice API is made up of 2,037 unique classes that provide various
features. Out of these only 61 classes are of any interest to clients of the
API. We find that 9 of these classes can be classified as hotspots and the
other 52 as neutral spots. This leaves a total of 1,976 classes as coldspots.
The most popular class provided by Guice is com.google.inject.Guice
and there are 424 clients that use it.
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Close to 96% of the features of Guice that are popularly used by clients
were introduced in its first iteration which was released on Maven central
in May 2009.

Easymock. There are unique 623 features provided by Easymock, out of
which 13.4% (84) are used by clients. This implies that 539 features pro-
vided by the API are never by used by any of the clients and are marked
as coldspots. 13 features are marked as hotspots, while 71 features are
marked as neutral. the The most popular feature is getDeclaredMethod

from the class org.easymock.internal.ReflectionUtils and is used by
151 clients.
Easymock being a small API consists of only 102 unique classes. Out of
these only 9 classes are used by clients. Only 1 can be classified as a hotspot
class and the other 8 are classified as neutral spots. This leaves 93 classes
as coldspots. The most popular class is org.easymock.EasyMock and is
used by 205 clients.
We observe that 95% of the features that are used from the Easymock API
were provided starting version 2.0 which was released in December 2005.

4.2.3 Discussion

We see that for Guava, Spring and Easymock, the percentage of usage of
features hovers around the 10% mark. Easymock has the largest percentage
of features that are used among the 5 APIs under consideration. This could
be down to the fact that Easymock is also the smallest API among the 5.
Previous studies such as that by Thummalapenta and Xie [34] have shown
that over 15% of an API is used (hotspot) whereas the rest is not (coldspot).
However, the APIs that they analyzed are very di↵erent to the ones that are
here as they are all smaller APIs comparable to the size of Easymock, however
none of them are of the size of the other APIs such as Guava and Spring. Also,
their mining technique relied on code search engines and not on type resolved
invocations.

In the case of Hibernate and Guice we see a much smaller percentage (1.8%
and 1.2% respectively) of utilization of features. This is far lower than that
of other APIs in this study. We speculate that due to the fact that the most
popular features that are being used are also those that were introduced very
early in the APIs life (version 3.3.1 in the case of Hibernate and version 1.0
in the case of Guice). These features could be classified as core features of the
API. Despite API developers adding new features, there may be a tendency
to not deviate from usage of these core features as these may have been the
ones that made the API popular in the first place.

This analysis underlines a possibly unexpected low usage of API features
in GitHub clients. Further studies, using our dataset, can be designed and car-
ried out to determine which characteristics make certain feature more popular
and guide developers to give the same characteristics to less popular features.
Moreover, this popularity study can be used, for example, as a basis for devel-
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opers to decide whether to separate more popular features of their APIs from
the rest and provide them as a di↵erent, more supported package.

5 Limitations

Mining API usages on such a large scale and to this degree of accuracy is not
a trivial task. We report consequent limitations to our dataset.

Master branch. To analyze as many projects as possible on GitHub, we
needed to checkout the correct/latest version of the project on GitHub. GitHub
uses Git as a versioning system which employs branches, thus making the task
of automatically checking out the right version of the client challenging. We
consider that the latest version of a given project would be labeled as the
‘master’ branch. Although this is a common convention [35], by restricting
ourselves to only the master branch there is a non-negligible chance that some
projects are dropped.

Inner and Internal classes. The method we use to collect all data about
the features provided by the APIs, identifies all classes and methods in the
API that are publicly accessible and can be used by a client of the API. These
can include inner public classes and their respective methods. Or it can also
consist of internal classes that are used by the features of the API itself but
not meant for public consumption. The addition of these classes and methods
to our dataset can inflate our count of classes and methods per API. If a more
representative count is desired, it would be necessary to create a crawler for
the API documentation of each API that is hosted online.

Maven (central) We target only projects based on a specific build au-
tomation tool on GitHub, i.e., Maven. This results in data from just a subset
of Java projects on GitHub and not all the projects. This may in particular
a↵ect the representativeness of the sample of projects. We try to mitigate this
e↵ect by considering one of the most popular building tools in Java: Maven.
Moreover, the API release dates that we consider in our dataset correspond
to the dates in which the API were published on Maven central, rather than
the dates in which the API were o�cial released on their websites. This could
have an impact on the computed lag time.

GitHub. Even though GitHub is a very popular repository for open source
software projects, this sole focus on GitHub leads to the oversight of projects
that are on other open source platforms such as Sourceforge and Bitbucket.
Moreover, no studies have yet ensured the representativeness of GitHub projects
with respect to industrial ones; on the contrary, as also recently documented
by Kalliamvakou et al. [36], projects on GitHub are all open source and many
of the projects may be developed by hobbyists. This may result in developers
not conforming to standard professional software maintenance practices and,
in turn, to abnormal API update behavior.

Hibernate. In the case of Hibernate, we could not retrieve data for version
2 or 1. This is due to the fact that neither of these versions were ever released
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on the maven central repository. This may have an impact on both of the case
studies as the usage results can get skewed towards version 3 of the API.

6 Conclusion

We have presented our approach to mine API usage from OSS platforms. Using
fine-GRAPE we created a rich and detailed dataset that allows researchers
and developers alike to get insights into trends related to APIs. A conscious
attempt has been made to harvest all the API usage accurately. We mined A
total of 20,263 projects and accumulated a grand total of 1,482,726 method
invocations and 85,098 annotation usages related to 5 APIs.

We also presented two case studies that were performed on this dataset
without using external scripts or data sources. The first case study analyzes
how much clients migrate to new versions of APIs. Besides confirming that
clients tend not to update their APIs, this study highlights an interesting
distinction between clients of APIs that frequently release new version and
those that do not. For the former, the lag time is significantly lower. Although
our sample of APIs is not large enough to allow generalization, we deem this
finding to deserve further research as it could potentially help API developers
decide which release policy to adopt, depending on their objectives. In the sec-
ond case study, we analyze which proportion of the features of the considered
API is used by the clients. Results show that a considerably small portion of
an API is actually used by clients in practice. We suspect that this may be a
result of clients only using features that an API was originally known for as
opposed to migrating to new features that have been provided by the API.

Overall, it is our hope that our large database of API method invocations
and annotation usages will trigger even more precise and reproducible work in
relation to software APIs.

7 Resources

The sample version of fine-GRAPE, titled fine-GRAPE-light can be found at:
https://github.com/theSorcerers/fine-GRAPE-light. The dataset can be
found on our Figshare repository at: https://figshare.com/articles/API_
Usage_Databases/1320591.
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