
Seahawk: Stack Overflow in the IDE
Luca Ponzanelli, Alberto Bacchelli, Michele Lanza

REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

Abstract—Services, such as Stack Overflow, offer a web plat-
form to programmers for discussing technical issues, in form
of Question and Answers (Q&A). Since Q&A services store the
discussions, the generated “crowd knowledge” can be accessed
and consumed by a large audience for a long time. Nevertheless,
Q&A services are detached from the development environments
used by programmers: Developers have to tap into this crowd
knowledge through web browsers and cannot smoothly integrate
it into their workflow. This situation hinders part of the benefits
of Q&A services.

To better leverage the crowd knowledge of Q&A services, we
created Seahawk, an Eclipse plugin that supports an integrated
and largely automated approach to assist programmers using
Stack Overflow. Seahawk formulates queries automatically from
the active context in the IDE, presents a ranked and interactive
list of results, lets users import code samples in discussions
through drag & drop and link Stack Overflow discussions and
source code persistently as a support for team work.

Video Demo URL: http://youtu.be/DkqhiU9FYPI

I. Introduction
Developers spend most of their programming time on

software maintenance, which is estimated to impact between
85% and 90% of the global cost of a software system [1], [2].
Up to 50-60% of this maintenance time is spent on program
comprehension [3]. Clear, comprehensive, and updated software
documentation would be an effective approach to reduce time
spent in program comprehension. However, developers report
how documentation is commonly inadequate, outdated, and
hard to retrieve or link to actual source code entities [4]
(open source development projects are similarly affected
by documentation related issues [5]). Moreover, software
developers are introduced and must remain updated on new
technologies and ideas [6].

Trying to tackle this documentation and knowledge sharing
issue, Q&A services, such as Stack Overflow, offer a web
platform to programmers for discussing technical issues, so
that they can share their knowledge and solve problems with
undocumented public libraries, unclear programming tasks,
or new technologies or frameworks to explore. In practice,
developers pose questions and receive answers regarding issues
from people that are not part of the same project, but might
be more knowledgeable about a specific topic. Even though
researchers pointed out that Q&A services could not provide
high level technical answers [7] [8] [9], these services are
“filling archives with millions of entries that contribute to the
body of knowledge in software development” and they often
become the substitute of the official product documentation [10]
(e.g., the developers of the open source project Aptana1 store
their official documentation as Q&A discussions).

1http://www.aptana.com/

Despite Q&A services being broadly used and deemed useful
for practical programming tasks, they are currently isolated
from the integrated development environments (IDEs) that
programmers use in their daily activities, and where they spend
most of their working time [4]). In fact, the web browser is the
only gate to Q&A crowd knowledge: There is no integration
with IDEs or programming and team workflow.

We claim that this status hinders the benefits brought by
Q&A services for a number of reasons, such as:

(1) the quality of the results returned by Q&A service
relies on the quality of queries manually formulated by
developers [11], who must accurately phrase the meaning of
their current programming task into useful terms;

(2) developers have no support for sharing functional
Q&A discussions (along with the reference to the context
where the discussion is valuable within the project they are
developing) with other team members, and cannot archive these
discussions for later reference and documentation;

(3) developers have to switch the context back and forth
between the IDE and the web browser, while they should be
focused only on their current task without interruptions or
disturbance [12] to avoid wasting time.

To tackle these problems, we propose Seahawk2, a rec-
ommendation system [6] (implemented as an Eclipse plugin)
that integrates the crowd knowledge of Q&A services within
the IDE. In particular, Seahawk mines the knowledge base
of Stack Overflow3, which is a notable example of technical
Q&A service that gained popularity among developers and
is an important venue for sharing knowledge on software
development [9]. In Stack Overflow more than 92% of the
questions on expert topics are answered in a median time of
11 minutes [9] and it is deemed to be very effective for “for
code reviews, for conceptual question and for novices” [10].

Seahawk gives users the support to:
(1) formulate queries automatically from the active IDE

context (by extracting keywords from the chosen code entities),
(2) view directly in the IDE a ranked list of related

Q&A discussions and interact with them,
(3) import code samples in discussions through drag & drop,
(4) connect Stack Overflow discussions to code artifacts and

store the link persistently.
Structure of the paper. In Section II we detail Seahawk and

its user interface, we present a use case scenario in Section III,
and describe its data-collection mechanism and recommen-
dation engine in Section IV. In Section V we sum up our
contributions.

2http://seahawk.inf.usi.ch
3http://stackoverflow.com

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Formal Demonstrations

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1295



4

3 1

2

Fig. 1: Seahawk User Interface

II. Seahawk

Figure 1 shows the user interface (UI) of Seahawk. Users
can interact with Seahawk through four main components:

1) Document Navigator View: In this view (Point 1 in
Figure 1) developers compose queries—in the text field—
and retrieve documents, which are displayed in a tree
view. Developers can navigate nodes of discussion (i.e.,
question or answers), and drag&drop documents or code
snippets into the code editor. Once a document is dropped
in the editor, Seahawk shows a dialog (Figure 2) to let
users put a comment to explain the connection between
the document and the code. Subsequently it generates the
annotation in the code editor to support coordination and
for later reference.

Fig. 2: Seahawk dialog for annotation’s comment

2) Suggested Documents View: This view (Point 2) shows
the documents linked to the code editor currently active.
Whenever a code editor tab becomes active, the view
asks the annotation engine to parse the code and retrieve

the documents. Similarly to the Document Navigator
View, this view shows a tree view to navigate the
documents. Documents removed from the search engine
(because removed from Stack Overflow) are not traversable
(Figure 3) and are prefixed by the message “Not Available”
in the document’s title. Users can modify comments of
annotation, or delete them, through a contextual menu.

Fig. 3: Not available document in Seahawk’s view

3) Document Contents View: When a document or a
node is selected in one of the aforementioned views, this
view displays its contents by using a custom layout in
an embedded web-browser widget. This widget allows
developers to navigate the links contained in the document
and to get additional information. We use a Javascript
library4 for multi-language syntax highlighting of the text
in <code> tags. Questions are in orange, the accepted
answer is in green, and other answers are in blue.

4) Notification System: To quickly spot new annotations
in the project, we implemented a notification system in
the package explorer (Point 4). Seahawk decorates files
in the package explorer by putting the number of new
annotations between square brackets.

4http://code.google.com/p/google-code-prettify/

1296



Fig. 4: Alice imports the code snippet in the code editor.

III. A Use Case Scenario

By means of a simple scenario, we illustrate how Sea-
hawk can help developers solving programming problems by
leveraging Stack Overflow from within the Eclipse IDE.

Alice is a student required to build an echo server in Java.
The server handles one client at a time and terminates itself
whenever a client sends the “quit” string. To start, Alice opens
up the Eclipse IDE, with the Seahawk plugin installed, and
begins creating the class EchoServer. She first creates a socket
by using the Socket class:

Listing 1: Initial Implementation of an Echo Server
public class EchoServer{

public static void main(String[] args){
Socket server;
server = new Socket("localhost",8000);

}
}

Alice looks at the methods trying to understand how to
accept incoming connections. Since she does not find any
method to accomplish this task, she invokes Seahawk, which
analyzes the existing code, builds a query, retrieves a set of
documents related to what is written in the EchoServer class,
and visualizes them in the Document Navigator View. Alice
inspects the documents by reading questions and answers. Every
time she moves to a specific node of a document, the content
is visualized inside the Document Content View. Among the
documents, Alice finds a question titled “Problems trying to
implement Java Sockets”. She reads the document and finds an
accepted answer that proposes the implementation of a simple
echo server. She understands that the right class to be used
is ServerSocket, instead of Socket. Thanks to the document
navigation system of Seahawk, Alice locates the code snippet
and drags it into the code editor, importing it (see Figure 4).
Alice can now modify the code in the editor to achieve the
desired outcome. With minor modifications she adapts the
imported snippet and makes the server able to terminate when
receiving a quit string from a connected client.

To conclude, Alice wants to bookmark the original solution
directly in the code, so that she can retrieve it later and show
it to her classmates. To this aim, she drags the document in
the editor. When Alice drops the document, Seahawk asks her

to put a comment by means of a dialog box. After Alice types
the comment and confirms, the annotation becomes visible
in the code editor, as a special comment. Subsequently, the
Suggested Documents View shows that a document is linked
to the source code. Moreover, every other person opening the
file with the Seahawk plugin installed will be notified about
the bookmark in the Suggested Documents View.

IV. Behind the Scenes

According to the definition given by Robillard et al. [6], we
present the components forming recommendation systems: the
data collection mechanism and the recommendation engine.

Data-collection Mechanism Eclipse

Seahawk

Annotation 
engine

Apache 
Solr Search 

EngineMbox
files
Mbox
files

XML
data
dump
files

XML dump
importer

DB
PostgreSQL

Annotation
Cache

(SQLite)

Query 
engineHTTP

POST

XML

POST

XML

Document 
builder

System model

Fig. 5: The architecture of Seahawk

Data Collection Mechanism. The Data Collection Mecha-
nism component is responsible for gathering Q&A data from
Stack Overflow. We import Stack Overflow documents from
the public data dump provided as a set of XML file5. The
data is extracted through a XML dump importer and stored
in a relational database for performance reasons. We built a
tool to query the database and build a JSON representation of
each document (thus making it available to any programming
language). The representation is then included in an additional
document schema, as required by the Apache Solr6 search
engine. Documents are indexed by a variation of the standard
tf-idf and are available for queries through a RESTful interface
as soon as the indexing phase is finished.

5blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
6http://lucene.apache.org/solr/

1297



The Recommendation Engine. The recommendation en-
gine provides manual and automatic interactions. The core is
composed of a query engine and an annotation engine.

The Query Engine: This component is responsible of
building queries and communicating with Apache Solr. The
engine builds the query, according to the syntax of Apache
Solr, in a way that every token must be present in the document
field or at least one of those is contained in the title field. The
overall relevance of a document is determined by the relevance
of its body and its title. Documents whose title is interesting for
the given query are retrieved even if the document’s body does
not match any of the tokens. Automation of Queries: Our
query engine also provides an automatic keyword extraction
feature to build queries. The extraction does not rely on the
Abstract Syntax Tree (AST) to analyze the code, but it relies on
island parsing, which can recognize structural information (i.e.,
classes and methods) even though the code does not compile.
The identified code entities are treated as text and analyzed
as natural language. The target entity is defined by the cursor
position in the text editor: The nearest entity is picked as target
entity. Once the entity is selected, the query is built by merging
the obtained keywords in two ways:

Processing the entity’s body: After we apply some basic
information retrieval techniques (e.g., removing stop-words,
split on change case), we extract the ten most frequent keywords
in the body. To this set, we add the name of the entity.

Analyzing the import statements: We take all the imports
statement used by an entity and we extract keywords from them
by splitting on the “.” character. The set of tokens obtained,
together with the set obtained from the entity’s body, becomes
part of the query.

The Annotation Engine: The annotation engine allows
the creation of links between source code and documents.
Links are represented through annotations in the code, so
that we automatically take advantage of versioning systems
already in place without requiring additional infrastructure.
We use a structure for the annotations similar to Doxygen7,
but developers can define custom delimiters (so that it can be
language independent), and to avoid conflicts with Doxygen or
JavaDoc annotations, we decided to put an exclamation mark
as last character for the opening delimiter. Listing 2 shows an
example of an annotation generated by Seahawk.

Listing 2: Example of an annotation generated by Seahawk
/*!
* @documentId <Document’s Id>
* @title <Document’s title>
* @comment <Author’s comment>
* @author <Autor’s name>
* @creationTime <creation date>
*/

The annotation engine also provides a notification system
to keep track of annotations already seen by developers. To
this aim, we use two different ways of parsing code: (1) We
take advantage of Eclipse’s partitioning system, and (2) we
implemented our own parser for annotations.

7www.doxygen.org/

The partitioning system identifies code blocks (partitions)
that match specific delimiters in the code editor (e.g., comment,
classes, methods etc.) every time a source file is opened or
modified in the code editor. The identified links are shown in
the Suggested Documents View and put in a cache. If there are
new annotations for file not already opened, they are notified
to the UI notification system (see Section II).

V. Conclusion

We presented Seahawk, an Eclipse plugin to leverage the
crowd knowledge provided by Q&A services. We detailed how
it lets users interact with Stack Overflow documents in a novel
way. Users can import code snippets and create links between
documents and source code by means of language-independent
annotations, and they can use annotations to take advantage of
the versioning system to collaborate and suggest documents to
teammates. Seahawk automatically generates queries from code
entities, and we explained how it deals with import statements
and uncompilable code to extract keywords from Java entities.

Acknowledgements

We thank the Swiss National Science foundation for the
financial support through SNF Project “SOSYA”, No. 132175.

References
[1] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-

sional, vol. 2, no. 3, pp. 17–23, 2000.
[2] R. C. Seacord, D. Plakosh, , and G. A. Lewis, Modernizing Legacy

Systems: Software Technologies, Engineering Process and Business
Practices. Addison-Wesley, 2003.

[3] T. Corbi, “Program understanding: Challenge for the 1990s,” IBM Systems
Journal (), pp. 294–306, 1989.

[4] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of ICSE 2006 (28th
ACM International Conference on Software Engineering). ACM, 2006,
pp. 492–501.

[5] T. Gleixner, “The realtime preemption patch: Pragmatic ignorance or a
chance to collaborate?” in Keynote of ECRTS 2010 (22nd Euromicro
Conference on Real-Time Systems), 2010, http://lwn.net/Articles/397422/.

[6] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems
for software engineering,” IEEE Software, pp. 80–86, 2010.

[7] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, “Knowledge
sharing and yahoo answers: everyone knows something,” in In Proceed-
ings of WWW 2008 (17th international conference on World Wide Web).
ACM, 2008.

[8] K. K. Nam, M. Ackerman, and L. Adamic, “Questions in, knowledge in?:
a study of naver’s question answering community,” in In Proceedings of
CHI 2009 (27th international conference on Human factors in computing
systems). ACM, 2009, pp. 779–788.

[9] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” pp. 2857–2866,
2011.

[10] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web? (nier track),” in Proceedings of ICSE
2011 (33rd International Conference on Software Engineering). ACM,
2011, pp. 804–807.

[11] S. Haiduc, G. Bavota, R. Oliveto, A. Marcus, and A. D. Lucia, “Evaluating
the specificity of text retrieval queries to support software engineering
tasks,” in Proceedings of ICSE 2012 (34nd International Conference on
Software Engineering), 2012, pp. 1273–1276.

[12] J. Raskin, The Humane Interface - New Directions for Designing
Interactive Systems. Addison-Wesley, 2000.

1298


