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Abstract—Stack Overflow is a popular questions and answers
(Q&A) website among software developers. It counts more than
two millions of users who actively contribute by asking and
answering thousands of questions daily. Identifying and reviewing
low quality posts preserves the quality of site’s contents and it
is crucial to maintain a good user experience. In Stack Overflow
the identification of poor quality posts is performed by selected
users manually. The system also uses an automated identification
system based on textual features. Low quality posts automatically
enter a review queue maintained by experienced users.

We present an approach to improve the automated system
in use at Stack Overflow. It analyzes both the content of a post
(e.g., simple textual features and complex readability metrics)
and community-related aspects (e.g., popularity of a user in the
community). Our approach reduces the size of the review queue
effectively and removes misclassified good quality posts.

I. Introduction

Q&A websites, like Yahoo! Answers and Ask,1 allow people
to ask questions and receive knowledge through answers from
the community. The popularity of Q&A websites has also
emerged in software engineering, in particular as support for
developers. Stack Overflow2 is the prominent example of a
technical Q&A website where developers exchange knowledge
about programming problems. Treude et al. [1][2] investigated
the interaction of developers with Stack Overflow, and reported
how this interaction is providing a valuable knowledge base
that can be leveraged during software development.

Stack Overflow is steadily growing both in the size of its
community and in the amount of the contents it provides. Its
data dump of March 2014 contains around 8.01M questions,
13.98M answers and a community of 2.87M users. The people
involved in the Stack Overflow community are very active:
In the last two years, 6,350 questions and 9,330 answers are
created daily in average. Given such a high rate of creation
of new posts, assuring the quality of the content in Stack
Overflow is a challenge. According to Agichtein et al. [3], the
quality of the content provided by Q&A websites varies, and
ranges “from high-quality questions and answers to low-quality,
sometimes abusive content [, thus making] the tasks of filtering
and ranking more complex than in other domains.” In Stack
Overflow, the task of keeping up the quality of questions is left
to the crowd: Poor quality posts are identified by a selected
subset of users in the community (i.e., moderators) who have
the rights to closing or delete questions.

Correa et al. [4] report that around 80% of the questions
take at least 1 month or more to receive a delete vote, and

1See http://answers.yahoo.com and http://www.ask.com
2See http://stackoverflow.com

approximately 14% receive 3 delete votes before being actually
deleted. This slow deletion process is a symptom of the amount
of effort required by moderators to guarantee a satisfiable level
of quality in Stack Overflow.

Providing support to the moderators by automatically
predicting the quality of a post is a solution to this problem.
When the predicted quality of a post is low, it is reviewed
manually by the selected users.

Many approaches focus on predicting the quality of Q&A
posts. Jeon et al. [5] devised a framework based on stochastic
processes to predict the quality of answers in Naver.3 Arai
et al. [6] presented a general model to predict quality of
information in Q&A websites by using three classification
algorithms (e.g., Decision trees, Boosting, and Naı̈ve Bayes).
Correa and Sureka [4] developed a predictive model to identify
deleted questions based on decision trees, by using features
extracted from the question’s text and the author’s information.
Adamic et al. [7] combine both user attributes (i.e., number of
best answer and number of replies) and answer characteristics
(i.e., reply length and thread length) to predict if an answer
will be chosen as accepted answer by the asker. Stack Overflow
implements a system to automatically identify and put low
quality posts in an ad-hoc review queue. Their approach only
relies on textual features (e.g., smileys count, body length).

These approaches try to accelerate the low-quality post
identification process by automating it. However, an automated
approach with low precision would only move the bottleneck
of the process from the identification phase to the review
phase: Many misclassified posts lead to wasted time, because
moderators have to spend time reviewing high quality posts.

We propose a complementary approach to identifying low
quality posts. It uses both features concerning the content of a
post (e.g., from simple textual features to more complex read-
ability metrics) and community-related aspects (e.g., popularity
of a user in the community). We apply our approach to refine
the Stack Overflow review queue, by removing misclassified
(i.e., good quality) posts. Our results show that the presented
approach is able to reduce the size of the review queue, with
a minimal number of false positives.

II. The Stack Overflow Review Queue Process

Low quality posts in Stack Overflow are identified through
a review queue system managed by moderators (a restricted set
of users with enough reputation to unlock specific privileges4).

3http://www.naver.com
4http://stackoverflow.com/help/privileges/
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Stack Overflow has 7 review queues:5 Late Answers, First
Posts, Low Quality Posts, Close/Reopen Votes, Suggested Edits,
Community Eval. We focus on the queue that is of direct interest
to us: the Low Quality Posts Queue. It contains posts that have
been automatically determined as low quality, by using several
system criteria that generates a post quality score, or that have
been manually flagged by users.

We focus on improving the efficiency of the Low Quality
Posts review queue. In particular, we propose an approach to
refine the queue to remove misclassified (i.e., good quality)
post while retaining the bad quality posts in the review queue.

III. Quality Classification Approach

A. Dataset Construction

We built different datasets, based on the public data dump
of September 2013, containing 5,648,975 questions. To avoid
subjective classification of the question quality, we relied on the
judgment of the crowd and we devised these two preliminary
quality levels:

High Quality: Questions, neither closed nor deleted, with
a score greater than zero and with an accepted answer;
1,110,260 questions fall into this category.

Low Quality: Questions with a score below zero, closed or
deleted in their final state; 152,691 questions fall into this
category.

In both cases we discard all questions whose score is 0.
We assume that 0-scored questions have not attracted enough
interests from the community to evaluate and classify their
quality. Moreover, we exclude from the dataset modified
questions since we want to avoid influence on the quality
evaluation given by the crowd.

The variance of quality among posts considering only two
levels of quality is remarkable [3], and thus a two classes
classification is too coarse grained. In fact, the two sets also
contain a lot of borderline quality questions.

To reduce this effect we further refine each quality class
by identifying ‘very good’ and ‘very bad’ questions. Table I
reports the distribution of the quality classes in our dataset
with the related features.

TABLE I. Quality classes of the questions in our dataset.

Class Description Size
A Very good questions (with accepted answer, not closed, not

deleted, score > 7)
76,592

B Good questions (with accepted answer, not closed, not deleted,
score 1-6)

1,033,676

C Bad questions (not closed, not deleted, score < 0) 70,837
D Very bad questions (closed or deleted) 81,854

Total 1,262,959

For the purpose of our study, we created two different
datasets that we need for training and testing.

As we see in Table I, the four classes are unbalanced. In
particular the class Good considerably differs from the other
three classes. To reduce the bias in the classification phase,
during the training of the quality function, we balanced the size

5http://meta.stackexchange.com/questions/161390/

of the classes in T1 dataset by randomly downsampling the
largest class [8]. Table II presents the two datasets with their
related sizes. The dataset T2 represents the remaining posts
belonging to the classes described in Table I.

TABLE II. Datasets created for our study.

Dataset T1 (Training) T2 (Testing)
Very Good 5,000 71,592
Good 5,000 1,028,676
Bad 5,000 65,837
Very Bad 5,000 76,854
Total 20,000 1,242,959

B. Metrics Definition

We identified metrics that cover textual and non-textual
features of Stack Overflow posts [9]. We report a short summary
of the metrics listed in Table III.

Stack Overflow (MSO) Metrics: Stack Overflow gave us a
set of descriptions of simple textual metrics already in use.

Readability (MR) Metrics: They capture other textual features
and readability metrics. We included structural metrics, like
words and sentences count, and the percentage of code. A
lower readability could be a symptom of poor quality, therefore
we include standardized readability metrics (e.g., Automated
Reading Index [10]).

Popularity (MP) Metrics: They concern the reputation6 of
the author of a question. We consider votes (e.g., up and down
votes), the total number of badges received, and a subset of
specific questions badges (e.g., Good and Stellar) and answer
badges7 (i.e., Nice, Great, Good). These metrics are calculated
at question creation time.

C. Classification Approach

The classification approach we proposed in our previous
work is based on a linear quality function (QF) [9]. We combine
all the metrics (mi) described in Section III-B by assigning
a weight (wi) in the [−1,1] interval. Metrics are normalized
according to the minimum and maximum value calculated from
the dump of September 2013, and range in the [0,1] interval.
The QF is learned to assign negative values for bad quality
posts and positive values for good quality posts.

QF =

n∑
i=1

wi ·mi wi ∈ [−1,1] mi ∈ [0,1] (1)

We constructed a different QF for each metric set devised
in Section III-B, and we learned each one using genetic
algorithms [11] implemented with the open source framework
JGAP.8 We trained the QF on the T1 dataset, considering two
levels of quality where A and B lie in the Good set, and C and
D lie in the Bad set. We trained our genetic algorithm by using
a population size of 64 individuals for 20 generations.

Figure 1 shows how we classify posts according to the
distribution of a quality function. We consider the left and
right tails based on specific quantiles of the quality function

6http://meta.stackoverflow.com/questions/7237/how-does-reputation-work
7http://stackoverflow.com/help/badges
8http://jgap.sf.net
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TABLE III. Stack Overflow (MSO) Metrics, Readability (MR) Metrics, and Popularity (MP) Metrics.

Metric Description
Body Length The length in characters of the question, including source code and HTML tagging.
Emails Count The number of e-mail addresses found in the question.
Lowercase Percentage The percentage of lowercase characters all over the question.
Spaces Count The total number of spaces in the question.
Tags Count The number of tags assigned to the question by the author.
Text Speak Count The number of text speak (e.g.,’doesnt’, ’wat’, ’afaik’, ’rotfl’) found in the question.
Title Body Similarity Textual similarity between title and body.
Title Length The length in characters of the title of the question.
Capital Title 1 if the title begins with a capital letter, 0 otherwise.
Uppercase Percentage The percentage of uppercase characters all over the question.
URLs Count The number of URLs found in the question.
Average Term Entropy Average entropy of terms in a question, according to the SO entropy index we devised. Each term’s entropy is calculated on the SO dataset.
Automated Reading Index 4.71 · ( characters

words ) + 0.5 · ( words
sentences )−21.43

Coleman Liau Index 0.588 ·L−0.296 ·S −15.8 where L = average number of letters per 100 words, S = the average number of sentences per 100 words.
Flesch Kincaid Grade Level 0.39 · ( total words

total sentences ) + 11.8 · ( total syllables
total words )−15.9

Flesch Reading Ease Score 206.835−1.015 · ( total words
total sentences )−84.6 · ( total syllables

total words )
Gunning Fox Index 0.4 · [( words

sentences ) + 100 · ( complex words
words )]

LOC Percentage The percentage of lines of code declared between tags ¡code¿ all over the text of the question.
Metric Entropy ( shannon entropy

body lenght ). It represents the randomness of the information in the question.
Sentences Count Numer of sentences contained in the question, excluding ¡code¿ tags.

SMOG Grade 1.0430 ·
√

polysyllables · ( 30
sentences ) + 3.1291

Words Count The number of words in the questions, excluding <code>tags.
Accepted by Originator Votes The number of accepted answer obtained by the user.
Approved Edit Suggestion The number of accepted edit suggestions the user obtained.
Answer Badges Count The number of badges obtained for answers (e.g., Great Answer, Good Answer, Nice Answer).
Badges-Tags Coverage The percentage of tags covered by the badges the user already possess.
Bounty Start Votes The number of votes the user received for having started a bounty (e.g., gift points for the answer she wants).
Bounty End Votes The number of votes the user received for having ended a bounty.
Close Votes The number of close votes the user received by the user for questions asked.
Deletion Votes The number of deletion votes the user received for the questions asked.
Down Votes The overall number of down votes the user received by the community.
Favorite Votes The overall number of favorite votes the user received by the community.
Moderator Review Votes The number of review votes the user received for her questions.
Offensive Votes The overall number of votes the user received for contents considered offensive.
Reopen Votes The number of close votes the user received for her already closed questions.
Question Badges Count The number of badges obtained for questions (e.g., Favorite Question, Stellar Question, Good Question).
Spam Votes The overall number of votes the user received for contents considered spam.
Total Badges The total number of badges the user obtained. It also includes badges for questions and answers.
Undeletion Votes The number of undeletion votes the user received for her already deleted questions.
Up Votes The overall number of up votes the user received by the community.

Fig. 1. Example of tails identification in the quality function distribution.
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distribution. The left tail identifies posts with very bad quality
(class D). The right tail identifies very high quality posts (class
A). A given model may consider different (and more restrictive)
quantiles to identify very bad or very good posts, and thus may
be more or less precise to identify high/low quality posts.

IV. Evaluating the Stack Overflow approach

In the public data dump of Stack Overflow many tables and
data are missing, e.g., the data concerning review queues and
the information concerning the quality score assigned to a post
by the system are not disclosed. We collaborated with Stack
Overflow to work on this private information. To evaluate the
base performance of their approach we introduce two definitions
of precision:

Hard Precision (HP): the percentage of posts in the review
queue belonging to the class D.

Soft Precision (SP): the percentage of posts in the review
queue belonging to the class D and C.

The rationale behind the hard precision is that the review
queue should ideally contain low quality posts that need to
be closed; the soft precision captures less problematic posts,
which are low quality but do not need to be closed or deleted.

TABLE IV. Review Queue (RQ) Distribution for T2

Class RQ Size Percentage
A 228 6.68%
B 991 29.01%
C 764 22.37%
D 1,433 41.94%
Total 3,416 100.00%

Table IV shows the number of posts classified as low quality
by the Stack Overflow approach according to the dataset T2 we
constructed. The Stack Overflow approach has a hard precision
of 41.9%, indicating that over 58% of posts in the review queue
are of C-quality or better. If we consider the soft precision,
the situation improves up to 64.31%, where 35.69% of the
contents of the review queue are good posts. As we infer from
Table IV, the Stack Overflow approach performs better when
it comes to identifying high quality posts belonging to class
A, while it fails when dealing with middle-high quality posts
belonging to class B. With our approach we try to refine the
review queue by removing high quality posts.
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TABLE V. Review Queue Reduction with our approach.

Model RQ Size A B C D HP SP RQ Reduction A Red. B Red. C Red. D Red.
RQ \A(MP,0.25) 3,108 166 799 735 1,408 45.30% 68.95% 9.02% 27.19% 19.37% 3.80% 1.74%
RQ \ (A(MP,0.25)∪A(MS O,0.05)) 2,650 107 559 664 1,320 49.81% 74.87% 22.42% 53.07% 43.59% 13.09% 7.89%
RQ \ (A(MR,0.25)∪A(MP,0.10)) 2,529 106 551 567 1,305 51.60% 74.02% 25.97% 53.51% 44.40% 25.79% 8.93%
RQ \A(MP,0.33) 2,552 89 507 657 1,299 50.90% 76.65% 25.29% 60.96% 48.84% 14.01% 9.35%
RQ \A(MR,0.33) 2,505 112 544 556 1,293 51.62% 73.81% 26.67% 50.88% 45.11% 27.23% 9.77%
RQ \A(MR,0.40) 2,300 78 430 529 1,263 54.91% 77.91% 32.67% 65.79% 56.61% 30.76% 11.86%
RQ \A(MP,0.40) 2,421 74 449 641 1,257 51.92% 78.40% 29.13% 67.54% 54.69% 16.10% 12.28%
RQ∩D(MP,0.40) 2,244 64 393 600 1,187 52.90% 79.63% 34.31% 71.93% 60.34% 21.47% 17.17%
RQ∩ (D(MR,0.40) 1,912 33 251 468 1,160 60.67% 85.15% 44.03% 85.53% 74.67% 38.74% 19.05%

V. Refining the Review Queue

We refine the review queue using the tails of the distribution.
Table V reports a summary of the different approaches we
followed to improve and reduce the low quality review queue.

We see two possibilities to refine the review queue using
a quality function: We can remove very good posts (A class)
or intersect the review queue with very bad quality posts (D
class). Since we have three different set of metrics, we can
also combine intersections and subtractions of tails for different
QFs originated with different metric sets. Let {A,D}(Mx,q) be
a tail for class A or D, for a QF learned with the set of metrics
Mx, and q be a quantile to identify the tails. We tried different
models to refine the review queue and we compared the hard and
soft precision we obtained against the one shown in Table IV.
Table V shows the result for the best performing models. We
can see that there is a tradeoff concerning the reduction of the
review queue (RQ Reduction), the hard precision (HP), the soft
precision (SP) and the percentage of D posts possibly removed.

For example, by removing A-class posts originated with the
popularity metrics (MP) QF on the 0.25 percentile, we are able
to remove 27.19% of posts belonging to the class A, and 19.3%
of posts belonging to class B, while losing only 3.8% of class
C posts and 1.74% of class D posts. We obtain a hard precision
of 45.3% and a soft precision of 68.95%, with and effective
review queue reduction of 9%. If we increase the percentile
with the same approach (e.g., 0.4 percentile), we can remove
65.79% class A post with a loss of 12.28% class D posts in
the worst case, increasing the review queue reduction to 29%
and the hard precision to 52%. Similar results can be obtained
with readability metrics (MR) where we are able to obtain the
highest review queue reduction (44%) while considering the
0.4 quantile and intersecting D-class posts, with a loss of 19%
of class D posts and a reduction of 85.5% of class A posts.

Lessons Learned. We can see that popularity metrics and
readability metrics are the most useful metric sets to refine the
low quality review queue. Readability metrics are effective alone
and in combination with popularity metrics (Table V), thus
connecting readability to good quality posts, and both metric
sets complement the simple textual features currently in use
at Stack Overflow. Thus, we recommend to take into account
popularity and readability metrics in the quality assessment
of posts. For example, while an automatic refinement system
could be long-term goal, a simple recommendation system
could be more effective in the short term to help reviewers
to discard posts that score high in popularity and readability
metrics, or review first posts that score particularly low.

VI. Conclusions

We discussed the review process of Stack Overflow, and
how the low quality review queue plays an important role in

identifying and filtering low quality contents. We have shown
how the hybrid approach in use at Stack Overflow populates
a review queue with a considerable amount of misclassified
posts. We proposed an approach to identify misclassified posts
in the review queue by analyzing the tail of a quality function
created by means of genetic algorithms. We have shown that
our approach is capable of reducing the low quality review
queue by removing good posts (class A), with a minimal loss
on real low quality posts (class D), thus saving time spent by
the Stack Overflow moderators in reviewing posts not supposed
to be reviewed.
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