
On The Road to Hades–Helpful Automatic Development Email Summarization

Alberto Bacchelli, Michele Lanza, Ebrisa Savina Mastrodicasa
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—During the development of software systems, pro-
grammers often discuss issues such as structural decisions,
defects, time management, etc. Especially in distributed devel-
opment, where most of the discussions among developers take
place via email, developers receive daily dozens, if not hundreds,
of messages, either personally sent to them or broadcasted by
mailing lists they are subscribed to. Dealing with these emails
requires developers to spend long time reading voluminous
amounts of text.

A way to solve this problem is summarization: Producing a
summary of a text means reducing it to a version based only
on fundamental elements, by removing the parts unnecessary
for the comprehension. Since researchers presented techniques
for automatically summarizing natural language documents
or source code, we are interested in investigating whether it
would be possible to also summarize development emails, so
that developers could consult small summaries instead of long
threads. In this paper, on the basis of our first experiences
in tackling development email summarization, we discuss the
challenges that go hand in hand with such an endeavor.

I. Motivation
Software development projects, especially if large-scale,

require a remarkable coordination effort amongst the project
workers. Given the intensity and problems that come with
coordination, it is no wonder that coordination is considered
the main reason why adding more developers to an ongoing
software project might not speed up development [4].

Coordination is driven by communication. In co-located
development teams, unplanned informal face-to-face meetings
are the favorite form of communication when developers need
to coordinate or face program comprehension problems [12].
Personal meetings, besides disrupting developers’ attention
and retaining knowledge by a few developers [10], are inap-
plicable to distributed development projects. Developers, thus,
replace face-to-face meetings with electronic communication
means. Instant messaging, wikis, forums are viable options,
but the decisive role is played by emails, indeed: “Mailing
lists are the bread and butter of project communications” [6].
Emails are asynchronous, thus evade time zone barriers and
do not disrupt developers’s attention; mailing lists broadcast
discussions, announcements, and decisions to all participants,
thus maintaining developers’ awareness; emails are not bound
to specific abstraction levels (as opposed to commit messages,
design documents, or code comments), thus they can be
used to discuss issues ranging from low-level decisions (e.g.,
implementation, bug fixing) up to high-level considerations
(e.g., design rationales); mailing lists archive messages, thus
offering a historical perspective.

Considered the numerous reasons why a programmer might
start an email conversation with a single colleague or the
entire rest of the team, and that a software project might
be carried out for several months or years, it is easy to
picture the vast amount of produced emails. For example, on
the Apache developer mailing list, there were about 4,996
messages in the year 2004 and 2,340 in 2005, and for gcc,
these numbers were 19,173 and 15,082 [3]. To maintain
team coordination and perform work on a software system,
software developers must keep track, read, and understand a
voluminous amount of electronic communication. This is a
challenge, not only because of the large number of emails–
which require time and effort to be read–popping up day after
day in a developer’s mailbox, but also because retrieving
past information from such messages can be time consuming
and frustrating. Sometimes, the amount of information may
be overwhelming, causing messages to be left unread and
searches to be abandoned, which in turn lead to duplicate,
uncoordinated, or non-optimized work to be performed [15].

One way to alleviate this information overload issue is
to provide a summary of development emails. A correct
and helpful summary (i.e., the text reduced to a version
without the parts unnecessary for the comprehension) enables
developers to reduce the time spent reading new emails or
perusing messages that have been returned from searches,
found through browsing, or recommended by team members.

Given the growing amount of produced and recorded
textual information, often referenced as big data, there is
substantial interest and a large body of work in the automated
generation of summaries for natural language documents, and
software development related artifacts (e.g., [7], [15]). On
the basis of the success of existing efforts on automatic
summarization, we wonder whether it would be possible to
devise a tool, which we call Hades, to automatically generate
helpful summaries of development emails. In this paper, we
specifically analyze and discuss the challenges that go hand
in hand with such an endeavor. We investigate the challenges
in devising a successful research methodology and in creating
an effective summarization technique to be implemented in
a tool that can be used in real world scenarios.

Structure of the paper: In Section II, we present existing
and related work in the area of textual summarization; in
Section III, we present the challenges that have to be tackled,
both in terms of research method and in creating an effective
approach; in Section IV, we discuss our findings from a
more high level perspective and conclude.



II. RelatedWork

Automatic summarization of documents written in natural
language has been attempted by researchers for more than half
a century [8]. We focus on efforts regarding summarization
of emails and software development artifacts.

Emails constitute a composite, chronologically ordered,
and structured (due to message metadata such as author,
subject, or date) material that can be summarized with
different methods. Lam et al. [11] proposed a system to
summarize email messages by exploiting thread reply chains
and commonly found features (like the proper names in
subjects found in the main sentences of the body). They
asked four participants to use their system on their own
messages and provide feedback on the results. The gathered
opinions were that the summary quality was either excellent
or very bad (without intermediate results), the system worked
best on either very short or very long email thread (sometimes,
for short messages, reading the summary took longer), and
the system would have been useful to decide which email to
read first but it did not obviate the need to read it. Rambow et
al. [14] proposed a technique to extract sentences exploiting
machine learning techniques. By considering a thread as a
single text, they fixed an incremental set of features that
composed a vector view of every sentence in the thread itself.
They computed features that are usable for all text genres (e.g.,
the length of the sentence), features obtained considering
the thread broken into messages (e.g., absolute position of a
message in the thread), and features specific to the thread
structure (e.g., number of responses to a message, number of
recipients of a message). They presented results in terms of
precision and recall with respect to a golden set of sentences
selected by two human readers, but did not evaluate resulting
summaries using word/string based similarity metric and/or
human judgments. Other summarization efforts include the
one of Carenini et al., who built a fragment quotation graph to
represent the structure of the conversation and subsequently
propose the usage of clue words (i.e., words that appear in
both parent and child messages), to improve the quality of
the summarization [5].

Concerning software artifacts, Rastkar et al. investigated
an approach to summarize issue reports [15]. They found that
existing conversation-based extractive summary generators
can produce summaries for reports that are better than a
random classifier, especially if trained on issue report data.
To evaluate reports they asked human judges, who agreed
that the generated extractive summaries contain important
points from the original report and are coherent. Haiduc et al.
proposed a technique for automatically summarizing source
code, leveraging the lexical and structural information in the
code [7]. Their preliminary study showed that we can use text
retrieval methods for this problem and the results are better
than the state of the art in natural language summarization.

III. Challenges
After analyzing the related work in document and software

artifact summarization, we started to investigate whether it
could be possible to automatically generate helpful summaries
of development emails. By exploring possible research
methods and approaches to devise an effective technique,
we found many unanswered questions while performing this
task. In the following we analyze these open questions, so
that we can see the state-of-the-practice in this topic and
underline aspects that call for further studies.

A. Methodology

Given the same development email, distinct people are very
likely to summarize it differently and give differing feedback
on others’ summaries. This is true not only in the case of
abstractive summaries (i.e., composing a document with new
sentences that express only the core messages), but also for
extractive ones (i.e., selecting a subset of existing sentences
to form the summary). This situation binds the results of
any summarization approach to the subjective evaluation
of humans. To alleviate this issue, we have to follow a
sound research method that considers the twofold nature (i.e.,
quantitative and qualitative) of this topic. Unfortunately, there
is no well-established research method: Researchers adopted
dissimilar approaches in their studies for both creating
golden sets of summaries and evaluating the output of their
approaches. Especially in the software engineering domain,
where only few studies cover artifact summarization, the
proposed research methods appear scattered and inconsistent
with one another. For this reason, the first open challenge
in this topic is finding a common base for a sound research
method.

We claim that the two main points when reasoning about
the research method to use are the development email corpus
and the participants to be involved in the study.
Corpus: Methodological questions regarding the corpus start
by deciding the population from which we can extract the
sample development emails. First, it is not clear yet whether
emails written in open source system (OSS) communities are
equivalent to those written in industrial settings, in terms of
summarization features. Could we generalize findings about
summarization learnt from OSS emails to other settings?
Second, developers write email both personally, one-to-
one, to other colleagues and publicly to mailing lists for
broadcasting. In this case, the main difference is the number
of participants having a role in the discussion. How does
this difference impact summaries? How much additional
value do we get with summarization features considering
participants? In addition, manually summarizing emails and
manually evaluating automatically generated summaries take
time. This limits the size of corpora of summarized messages.
Yet, we might assume that some of the features appropriate
for summarization can be learnt from a reasonably small
sample of well chosen examples. How can we compute the



size of the smallest, yet representative, email sample? Should
we have a smaller sample, analyzed by many annotators per
email, or a larger sample, with fewer annotators per email?
Participants: Finding the proper participants for software
engineering research efforts is a daunting task, especially
when research is conducted in an academic setting. The
challenge regards expertise, disagreement, and task difficulty.

• Expertise: To evaluate approaches for automatically
summarize general purpose emails, researchers have
been employing corpora such as the Enron dataset [9].
This kind of emails can be almost totally understood by
non-experts, who can easily generate the summaries. On
the other hand, software artifacts, such as issue reports
and development emails, contain technicalities that re-
quire more expertise to be correctly interpreted; for this
reason, researchers have generally employed participants
with a computer science background, mostly graduate
students (e.g., [7], [15]). However, how correctly can
non-experts in a specific software project capture the
proper meaning of emails, especially those referring to
implied parts or using jargon? Rastkar et al. explain that
“summaries created by experts might rely on knowledge
that was not in the bug reports, potentially creating a
standard that would be difficult for a classifier to match.”
Should we have the best golden set, or is the most
reasonable and simple one to create enough?

• Disagreement: Due to the subjectivity of the sum-
marization task, researchers reported medium-low to
very low agreement (mostly less than 0.4 value in
the kappa test, e.g., [15]) in summaries extracted or
generated by human participants. An open challenge is
deciding what value of agreement is “good enough” for
software engineering research and how we can handle
this disagreement to manage or reduce it. What are the
points of disagreement? Do we achieve better agreement
when the participants are more expert of the systems
being discussed in the emails? What will the impact on
data reliability be, if we ask participants to collaborate
and reach a final agreement on their initial summaries?

• Task Difficulty: Participants in summarization studies
are mostly asked to perform two different tasks: Gen-
erating a summary of a given document and evaluate
the quality of a summary already produced. These tasks
require a different effort: At least time wise, evaluating
a given summary seem to be less problematic. Even
though human generated summaries might be also used
to validate automatic generated ones, their main usage
is to learn features to be implemented by algorithmic
techniques. Would it be right to let researchers analyze
and realize what the best summarization features are
and just ask participants to rate automatically generated
summaries? How strong is the risk that participants may
just want to please experimenters while evaluating?

B. Abstractive or Extractive?

Our aim is to automate the summarization process and
obtain emails that emulate the characteristics of the original
ones, without losing the meaning. Summaries can be either
abstractive or extractive. An extractive summary contains
a subset of the text belonging to the original email. Since
with this method the text is extrapolated from their original
context, reordering may be needed to make the summary com-
prehensible. Abstractive summarization refers to composing a
document with new sentences that contain the core messages
of the original one. This second form produces more fluent
summaries as it respects natural language semantic rules. The
current state-of-the-art in abstractive techniques has not yet
supported meaningful application, while extractive summaries
present a number of advantages, such as:
• An extractive process is more lightweight than an

intelligent procedure of summary composition. This
translates into a reduced computation time.

• By using entire parts of the text included in the original
email, it is impossible to compose new phrases with
incorrect synonyms. Even if the flow between parts
might result shaky, the internal meaning of every single
part remains the same.

• When users read some text in the summary, they can
easily link it back to the original email if needed. On
the contrary, tracing back a topic from an abstractive
summary to the original email requires more time.

Despite this situation, given the small work on summa-
rization in the software engineering domain, we believe that
choosing the best approach still remains an open question.

C. Keywords or Sentences?

By deciding to perform extractive summaries, at least
because of their technical advantages, we are facing another
question: How much and which kind of text should we extract
from development emails? In related work, we find two
alternative portions of text used for extraction: keywords or
sentences. In the current-state-of-practice, keyword extraction
mainly finds quantitative application in text mining [2] (e.g.,
trend and event detection in stream of documents, document
clustering, or creation of tag cloud visualizations), while
sentence extraction is used when the final output is read by
people. In the case of source code summarization, the choice
is keywords, mainly processed function names or identifiers.

Similarly to previous choices, there is no widespread
adoption of an extractive approach in software engineering.
For this reason, we started investigating this topic ourselves
[13], by involving two undergraduate students in informatics.
We performed a small pilot study where we asked the
participants to (1) read 6 six email threads chosen from the
ArgoUML mailing list, (2) summarize three threads extracting
keywords and three extracting sentences, and (3) answer a few
debriefing questions about the difference when summarizing



with keywords and with sentences. We also recorded the time
necessary for producing the summaries. In case of participant
A, producing keyword summaries required double the time
(compared to sentence summaries), while the opposite held
for participant B. Participant A found it easier and more
natural to extract sentences, because she had the feeling that
by extracting keywords there was a high risk of missing
relations among them. On the contrary, participant B found
keyword extraction easier and more appropriate; indeed he
spent less time in this summarization technique. In the case
of keywords, both the participants felt the need to extract
not only single terms but n-grams composed of 2 to 4 words,
especially with bi-grams such as “not correct.”

Even though this was a small pilot study, we found this
experience interesting: Analyzing the answers of two students
with exactly the same background in informatics, it is still not
clear whether keyword or sentence extraction should be used
for automatically summarize email threads. This situation
calls for a more in-depth study of advantages and drawbacks
of summarization approaches both from the perspective of
study participants and from that of final users.

D. Not Only Natural Language

Most of the general purpose summarization approaches
are tested on well-formed, or sanitized, natural language
documents. When summarizing development emails, however,
we have to deal with natural language text which is often not-
well formed and is interleaved with languages with different
syntaxes, such as code fragments, stack traces, patches, etc.

Currently no summarization technique takes this aspect
into account, for example Rastkar et al. explained that they
intentionally avoided issue reports with these features: “We
avoided selecting bug reports consisting mostly of long stack
traces and large chunks of code as this content may be
used but is not typically read by developers” [15]. On the
contrary, we claim that the presence of these parts written
in different languages are the most domain specific feature
of the summarization of development emails, and software
artifacts in general; we state that not considering this aspect
can undermine the effectiveness of the proposed methods [1].
Moreover, the presence of different languages should be taken
into account when considering the size and the element in
the email sample to construct benchmarks and golden sets.

E. Meta-modeling Email Threads

The email thread as a whole is a collaborative effort with
interaction among the discourse participants. Since replies
do not happen immediately, the responses need to identify
relevant elements of the discourse context (e.g., by citing
previous messages). Researchers presented techniques for
using the intrinsic characteristics of email threads (e.g., repeti-
tions of parts) to create better general purpose summaries [5].
However, trying to replicate their approaches on development
mailing list emails, we encountered a challenge: What is

the most appropriate meta-model for email threads and their
messages, so that we can derive precise features for each
sentence? An elementary solution would sort emails in a
thread chronologically, removing quoted text in the replies.
However, this would imply losing the binding among the
different parts. On the other hand, reconstructing the model
of a thread is not a trivial task, because of the noisy nature
of emails, where text is not correctly and entirely repeated
in the right places (e.g., due to 80 character line limitation).
Moreover, there are different posting style when replying
to emails: interleaved posting (also know as inline replying,
where relevant parts in the original message are quoted), and
bottom-posting and top-posting (where the reply follows and
precedes the original message, respectively). If interleaved
posting is practical for reconstructing thread models, the other
two cases leave open the question whether to consider the
quoted text entirely or not. This requires further investigation.

F. Scoring Extracted Parts

Given that extractive summaries created by different people
tend to significantly diverge, determining which of the parts
chosen by annotators should be considered in the final golden
set is a non-trivial task. Researchers mostly had an odd
number of annotators per email, so that they could pick parts
selected by the majority for the golden set. However, we
deem that a part chosen by all the annotators should have
more weight than parts chosen by just half of the participants.
This requires the creation of a valid scoring system, which
would also ease the replicability of studies on summarization
techniques.

IV. Conclusion

Given the vast amount of communication related to
software development that takes place through emails daily,
and the subsequent information overload, we claim that the
summarization of development emails would be a helpful
contribution to the software engineering community; not only
for reducing the amount of text to be read daily be developers,
but also to improve retrieval of pertinent information from
email archives.

In this paper we presented the numerous challenges and
questions that are still open on this topic, and the next
steps that researchers will have to face in the future to
devise methods and tools for automatically generating helpful
summaries of development emails. We found that not only
precise and technical challenges are still open (e.g., a scoring
system for parts selected by annotators, a correct meta-
model for email threads, or the analysis of parts not in
natural language), but we are also missing a widespread and
consolidated research method for devising these kinds of
studies. Moreover, studies in related fields can guide only
partially our future research on this topic, due to the scattered
results and the many differences with the given domain.



References

[1] A. Bacchelli, T. dal Sasso, M. D’Ambros, and M. Lanza. Con-
tent classification of development emails. In In Proceedings
of ICSE 2012 (34th ACM/IEEE International Conference on
Software Engineering), pages 375–385, 2012.

[2] M. W. Berry and J. Kogan. Text Mining: Applications and
Theory. Wiley, 2010.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan. Mining email social networks. In Proceedings of
MSR 2006 (3th International Workshop on Mining Software
Repositories), pages 137–143. ACM, 2006.

[4] F. Brooks. The Mythical Man-Month. Addison-Wesley, 2nd
edition, 1995.

[5] G. Carenini, R. T. Ng, and X. Zhou. Summarizing email
conversations with clue words. In Proceedings of WWW 2007
(16th International World Wide Web Conference), pages 91–
100, 2007.

[6] K. Fogel. Producing Open Source Software. O’Reilly Media,
first edition, 2005.

[7] S. Haiduc, J. Aponte, and A. Marcus. Supporting program
comprehension with source code summarization. In Proceed-
ings of ICSE 2010 (32nd ACM/IEEE International Conference
on Software Engineering), pages 223–226. ACM, 2010.

[8] K. S. Jones. Automatic summarising: The state of the art.
Information Processing and Management, 43(6):1449–1481,
2007.

[9] B. Klimt and Y. Yang. Introducing the enron corpus. In
Proceedings of CEAS 2004 (1st Conference on Email and
Anti-Spam), 2004.

[10] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proceedings
of ICSE 2007 (29th ACM/IEEE International Conference
on Software Engineering), pages 344–353. IEEE Computer
Society, 2007.

[11] D. Lam, S. L. Rohall, C. Schmandt, and M. K. Stern.
Exploiting e-mail structure to improve summarization. 2002.

[12] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of
ICSE 2006 (28th ACM International Conference on Software
Engineering), pages 492–501. ACM, 2006.

[13] E. Mastrodicasa. Extractive summarization of development
emails. Bachelor’s thesis, University of Lugano, June 2012.

[14] O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen. Summa-
rizing email threads. In In Proceedings of the Conference of the
North American Chapter of the Association for Computational
Linguistics (NAACL) Short Paper Section, 2004.

[15] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing
software artifacts: a case study of bug reports. In In
Proceedings of ICSE 2010 (32nd ACM/IEEE International
Conference on Software Engineering), pages 505–514, 2012.


	Motivation
	Related Work
	Challenges
	Methodology
	Abstractive or Extractive?
	Keywords or Sentences?
	Not Only Natural Language
	Meta-modeling Email Threads
	Scoring Extracted Parts

	Conclusion
	References

