
A Search-based Training Algorithm
for Cost-aware Defect Prediction

Annibale Panichella
Delft University of Technology

The Netherlands
a.panichella@tudelft.nl

Carol V. Alexandru
University of Zurich

Switzerland
alexandru@ifi.uzh.ch

Sebastiano Panichella
University of Zurich

Switzerland
panichella@ifi.uzh.ch

Alberto Bacchelli
Delft University of Technology

The Netherlands
a.bacchelli@tudelft.nl

Harald C. Gall
University of Zurich

Switzerland
gall@ifi.uzh.ch

ABSTRACT
Research has yielded approaches to predict future defects
in software artifacts based on historical information, thus
assisting companies in effectively allocating limited devel-
opment resources and developers in reviewing each others’
code changes. Developers are unlikely to devote the same
effort to inspect each software artifact predicted to contain
defects, since the effort varies with the artifacts’ size (cost)
and the number of defects it exhibits (effectiveness). We pro-
pose to use Genetic Algorithms (GAs) for training predic-
tion models to maximize their cost-effectiveness. We eval-
uate the approach on two well-known models, Regression
Tree and Generalized Linear Model, and predict defects be-
tween multiple releases of six open source projects. Our
results show that regression models trained by GAs signifi-
cantly outperform their traditional counterparts, improving
the cost-effectiveness by up to 240%. Often the top 10% of
predicted lines of code contain up to twice as many defects.

Keywords
Defect prediction, genetic algorithm, machine learning

1. INTRODUCTION
Statistical modeling has been frequently used in empirical

software engineering to analyze software projects [7]. One of
its leading applications is to create prediction models to an-
ticipate where defects will occur in a software system. Such
models are valuable in different contexts: For example, Kim
et al. demonstrate their importance in efficient API testing,
where prediction models increase the testing effectiveness in
industrial environment [20]. Researchers and practitioners
underline their importance to effectively allocate human and
computing resources [11], for example during code review [5].

In early efforts, researchers (e.g., [41]) had investigated
prediction models to provide a binary classification of each
software artifact: Likely or not likely to incur in future de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20–24, 2016, Denver, Colorado, USA
c© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908938

fects. Commonly used evaluation metrics were precision and
recall [41] or the Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) curve. The AUC
plots the classes correctly classified as defective against those
incorrectly classified as defective, as the prediction model’s
discrimination threshold varies.

Recently, researchers noted that the effort required by de-
velopers towards inspecting artifacts suggested by binary
classification models varies depending on the artifact [25].
Larger and more complex software artifacts require addi-
tional inspection effort, thus hindering both the usefulness
and the effectiveness of the prediction. As a solution, re-
searchers have proposed to rethink prediction in terms of
cost-effectiveness: Artifacts should be inspected in the or-
der that maximizes the ratio between the number of defects
found and the effort spent (effort usually approximated by
the size of the artifacts) [11]. In this context, commonly used
evaluation metrics are: (i) the cost-effective AUC (AUC-
CE) [11], which represented a weighted version of the more
traditional AUC metric; and (ii) the Peffort metric [11].

In every effort-aware prediction model presented so far—
regardless of the employed statistical mechanism—the model
is not directly trained to find the best fit to rank on the cost-
effectiveness, rather to predict the raw number of defects,
i.e., an approximation of it.

The idea we propose and evaluate in this paper is to use
genetic algorithms (GAs) to automatically tweak the coeffi-
cients of a prediction model such that the cost-effectiveness
on the training set is maximized. Menzies et al. [28] were
the first to propose the idea of manually tuning the internal
parameters of a rule learner to find the proper settings, thus
leading to a learner that significantly outperforms standard
learning methods [28]; here, we aim to automatically train
statistical models. We use GAs to evolve the coefficients of
regression algorithms to build a model optimizing the cost-
effectiveness on the training set, under the assumption that
it will also predict cost-effectiveness better on the test set.

We assess our idea by implementing it and conducting an
empirical evaluation on a number of distinct software sys-
tems and releases. As our baseline, we consider widespread
statistical regression models (i.e., generalized linear regres-
sion model (GLM) and regression trees (RT)) and metrics
(i.e., Chidamber and Kemerer (CK) metrics and Lines of
Code (LOC)). Our results show that our approach signifi-
cantly outperforms traditional models.

http://dx.doi.org/10.1145/2908812.2908938

2. BACKGROUND AND PROBLEM
Researchers have studied the relation between character-

istics of the source code or the development process of a
project and its evolution for more than two decades.

2.1 Previous work
Prediction approaches. Researchers devised a number

of defect prediction approaches to guide software mainte-
nance and evolution by identifying more defect-prone soft-
ware artifacts [11]. These approaches are based on statistical
models, whose main difference is the diverse sets of predict-
ing metrics and the underlying algorithms that learn from
these metrics and make predictions [15, 37]. Examples of
metrics are the Chidamber and Kemerer’s object-oriented
(CK) metrics [10, 6], structural metrics [3] or process met-
rics [29]. Examples of algorithms are logistic regression used
by Zimmermann et al. [40]; Multi-Layer Perceptron (MLP),
radial basis function (RBF), k-nearest neighbor (KNN), re-
gression tree (RT), dynamic evolving neuro-fuzzy inference
system (DENFIS), and Support Vector Regression (SVR)
used by Elish [14]; Bayesian networks used by Bechta [31];
and Naive Bayes, J48, Alternative Decision Tree (ADTree),
and One-R considered by Nelson et al. [30]. Recently, other
researchers have proposed further advanced machine learn-
ing techniques, such as ensemble learning [23], clustering
algorithms [36], and combined techniques [32]. Lessman
et al. [22] evaluated 22 classification models and showed
that there is no statistical difference between the top-17
models when classifying software modules as defect prone.
Meta-heuristics have been also investigated, such as using
genetic algorithms (GAs) [13, 19, 23] or genetic program-
ming (GP) [1] to build prediction model aimed at optimizing
traditional performance metrics for classification problems,
such as precision, recall, and f-measure.

Effort-aware prediction. Mende et al. [25], Kamei et
al. [18], Menzies et al. [28], and D’Ambros et al. [11] are
among the first to warn of the importance of taking into ac-
count the effort needed to review the files suggested by pre-
diction models. Traditional performance metrics used for
binary predictions (precision, recall, f-measure, AUC [32],
error sum, median error, error variance, and correlation [11])
are not well-suited to evaluate prediction since they give the
same priority/importance to all defect-prone software com-
ponents. Instead, in a practical scenario engineers would
benefit from identifying those software components likely to
contain more defects earlier, or requiring lower inspection
cost at the same number of defects. Consequently, predic-
tion methods should be cost-effective, where the effective-
ness is number of defects to predict and the inspection cost
is approximated by the lines of code (LOC) metric, relying
on the intuition that larger files require more time and effort
to review than smaller files [11, 25, 18].

Previous work proposed performance metrics (e.g., AUC-
CE and Peffort) designed for evaluating the cost-effectiveness
of prediction models [11, 34, 17, 32, 33, 28]. However, the
models were still built using traditional training algorithms;
for example, D’Ambros et al. [11] trained traditional linear
regression models using the classical iteratively re-weighted
least square algorithm; Rahman and Devanbu [33] used four
different machine learning techniques (i.e., Logistic Regres-
sion, J48, SVM, and Naive Bayes) that were trained using
the corresponding classical training algorithms.

2.2 Problem statement
Even if previous work [25, 18, 11] proposes to evaluate

prediction model using new effort-aware metrics based on
the required inspection effort, these metrics have not been
used to train the statistical models. In fact, statistical and
machine learning techniques have been used to find mod-
els that minimize the prediction error when computing the
number of defects in a software artifact, not to maximize
the cost-effectiveness (which is a different problem). More-
over, cost-effective metrics have been used to assess the final
quality of a model (e.g., as a post training process). There-
fore, models are built onto a training set optimizing some
performance metric (e.g., relative error and precision with
respect to number of defects), but they are evaluated on the
test set using different metrics (e.g., AUC-CE).

Menzies et al. [28] were the first to propose the idea of
considering the effort (LOC) in the inner loop of a rule
learner (i.e., WHICH). The WHICH parameters were man-
ually tuned to find the settings leading to the best cost-
effectiveness and this lead WHICH to significantly outper-
form standard learning methods [28]. In practice, the pro-
posed solution requires to (i) manually tune the parameters
and (ii) manually inspect the results on the test set to verify
whether the performance is improved with respect to stan-
dard learning methods (i.e., using the oracle).

Our goal. In this work, we aim at automatically find-
ing the internal parameter values that optimize the cost-
effectiveness (on the training set), instead of manually tun-
ing them. To this aim, we present a general framework to
train any regression model with GAs to effectively explore
the search space of possible parameters, where the quality
of each parameters’ setting (represented as a GA individual)
is evaluated based on its cost-effectiveness detected on the
training set.

In the following we present the two statistical models that
we use to instantiate our general framework (i.e., GLM and
RT). These statistical models make different assumptions
over the training data and have been widely used in a num-
ber of defect prediction scenarios [11, 21], thus making them
good candidates as subjects for this study.

2.3 Generalized linear regression
GLM is a generalization of the traditional linear regres-

sion model that relaxes some of the traditional assumptions,
such as the normal distribution of data points and identical
variance of the predictors. A GLM consists of three main
components: (i) independent variables, (ii) a linear func-
tion, and (iii) a link function. In our case the (i) independent
variables M = {m1, . . . ,mk} are the software metrics used
as explanatory variables of the scalar dependent variable Y ,
i.e., the number of defects. The (ii) linear function con-
denses the independent variable into a scalar value η with a
set of linear coefficients B = {α, β1, . . . , βk} such that

η = α+ β1 ×m1 + · · ·+ βk ×mk (1)

The (iii) link function is a smooth and invertible linearizing
function f that provides the relationship between the expec-
tation of the outcome µ = E(Y) and the linear function:

f(µ) = η = α+ β1 ×m1 + · · ·+ βk ×mk (2)

If the link function is the identity function with the un-
derlying assumption that the data points are normally dis-
tributed, then Equation 2 corresponds to the traditional

m1 < x1

true false

1.23 m2 < x2

true false

m1 < x3

true false

2.31 5.17

m3 < x4

true false

0.14 3.70

Figure 1: Regression tree for defect prediction.

multinomial linear regression Y = α+β1×m1+· · ·+βk×mk,
as used in previous work (e.g., [41]). Given the general model
represented by Equation 2, the problem is to find the set of
coefficients B = {α, β1, . . . , βk} such that the corresponding
generalized linear model f(µ) minimizes the Mean Squared
Error (MSE) between the predicted value and the actual
outcome Y . The traditional algorithm to solve this problem
is the iteratively re-weighted least square procedure.

2.4 Regression Tree
A regression tree (RT) is based on a tree-like structure

where the internal nodes (i.e., decision nodes) contain de-
cision rules on software metrics (e.g., number of classes)
while the leaf nodes are the prediction outcomes, i.e., num-
ber of defects a given class (see Figure 1). A decision rule
is based on a software metric mi and a decision coefficient
xi and it verifies whether a specific condition (e.g., if mi <
xi) is reached or not, thus partitioning the decision in two
branches (true and false). Given a specific class instance,
the classification is performed by traversing a specific path
in the tree according to the set of satisfied conditions (rules)
until reaching a leaf node, which contains the final predicted
score, e.g., number of defects. For example, a software arti-
fact whose metrics traverse the first true branch in Figure 1
will be classified as defect-prone and its predicted number
of defects will be 1.23. During the training process of the
tree, a building algorithm is used to find the tree structure
that provides the best prediction of the outcome for the
training set. Specifically, given the set of software metrics
M = {m1, . . . ,mk}, the traditional prediction problem con-
sists in finding the regression tree model which minimizes
the Mean Squared Error (MSE) [35]. One of the most used
algorithms to solve this problem is the CART greedy algo-
rithm, which applies a top-down strategy to derive the best
structure of the tree through a subsequent splitting process.

3. PROPOSED SOLUTION
We hypothesize that if the target of prediction models

is the cost-effectiveness and the models are evaluated differ-
ently with respect to traditional classification and regression
problems, then models trained using a different, more appro-
priate training algorithms than traditional ones would show
better results. Therefore, we propose to modify the train-
ing algorithm such that artifacts likely to have higher defect
density are given higher priority.

To this end, instead of minimizing the MSE, we wish to
maximize the ratio between the cumulative number of de-
fects (effectiveness) and the total amount of code to inspect
(cost), with regard to the list of predicted artifacts, ordered
by their defect-proneness. Specifically, let O = 〈a1, . . . , an〉
be the list of artifacts in the training set ordered by their
predicted scores produced by a regression model fB , where

0

L
O
C

(o
1
)

2 ∑ j
=

1

L
O
C

(o
j
)

..
.

..
.

n ∑ j
=

1

L
O
C

(o
j
)

0

defects(o1)

2∑
j=1

defects(oj)

. . .

n∑
j=1

defects(oj)

o1

o1 o2

· · ·

· · · · · ·

Inspection Cost

%
o
f

d
e
fe

c
ts

Figure 2: Graphical interpretation of the proposed
fitness function

B = {β1, . . . , βk} is the set of regression coefficients. We
reformulate the defect prediction problem as follows:

Problem 1. For the regression model fB, find the set
of coefficients B = {β1, . . . , βk} that maximizes its cost-
effectiveness, i.e., maximizing the cumulative number of de-
fects encountered when inspecting the LOC for the predicted
artifacts in the ordering O = 〈o1, . . . , on〉:

maxϕ(FB) =

n∑
i=2

(
i−1∑
j=1

defects(oj)× LOC(oi)

)
(3)

In the equation above,
∑i−1

j=1 actual(oj) denotes the cumu-
lative number of defects for the first i − 1 artifacts in the
ordering O. Finally, LOC(oi) measures the lines of code of
the i-th artifact in the ordering O. We use the LOC metric
as a proxy for effort as previously done [25, 4, 11, 8, 32, 9].

The fitness function reported in Equation 3 measures the
AUC-CE using the rectangle rule, i.e., by summing-up the
areas of rectangles forming the grey-area in Figure 2. This
Figure plots the cost-effective ROC (ROC-CE) drawn by
a given ordering O = 〈a1, . . . , an〉 of software artifacts pro-
duced by a regression model fB . Specifically, ROC-CE plots
on the y axis the cumulative number of actual defects en-
countered when analyzing the first i artifacts, whose cu-
mulative inspection cost (approximated by artifacts size) is
reported on the x axis. Hence, the function ϕ is equal to the
sum of the rectangles with the following height and width:

Heighti =

i−1∑
j=1

defects(oj) (4)

Widthi =

i−1∑
j=1

LOC(oj)−
i∑

j=1

LOC(oj) = LOC(oi) (5)

The higher the grey-area in Figure 2, i.e., the higher the
function ϕ(FB), the higher the defect density for the first
LOC to inspect according to the ordering O.

For GLM and RT, Problem 1 can be instantiated as re-
ported below:

Problem 2. Find the set of linear combination coeffi-
cients B = {α, β1, . . . , βk} to use in Equation 2 to maximize
the function ϕ.

Problem 3. Let t be the decision tree structure obtained
using the CART algorithm. Find the set of decision coeffi-
cients X = {x1, . . . , xk} for the decision nodes in t to max-
imize the function ϕ.

Therefore, we use the proposed function ϕ as the measure for
predicting the performances of GLM and RT in the context
of defect prediction.

3.1 Training Regression Models With GAs
To solve the aforementioned optimization problems, we

apply GAs, i.e., stochastic search algorithms inspired by
natural selection and natural genetics. GAs are a class of a
global search algorithms that uses multiple candidate solu-
tions to explore, in parallel, multiple regions of the search
space. In our case, the search space is denoted by the set
of all possible sets of linear combination coefficients B =
{α, β1, . . . , βk} for GLM, and the set of decision coefficients
X = {x1, . . . , xk} for RT. A candidate solution (individuals)
is represented as an array with k floats (chromosome), where
each element represents one regression coefficient in B or a
decision coefficient in X. Thus, an individual is a particular
GLM configuration or RT configuration, depending on the
technique we are training.

GAs start with a random generated set of chromosomes
(population), i.e., randomly generated GLM or RT configu-
rations. Then, the population is evolved during subsequent
iterations (generations) using three genetic operators: (i)
selection, (ii) crossover, and (iii) mutation. During each
generation the chromosomes are first evaluated according to
the fitness function to be optimized (function ϕ in our case).
The best (fittest) chromosomes are then selected for repro-
duction using a selection operator. During this phase, new
chromosomes (i.e., offspring) are generated by recombining
genes (chromosome elements) between two individuals from
the current generation using the crossover operator and the
mutation operator. At the end of each generation, the ob-
tained chromosomes are used as starting points for the next
generation. Further details on genetic operators and param-
eters setting used in this paper can be found in Section 4.

In the related literature, previous work applied evolution-
ary algorithms, and in particular GAs, to defect prediction.
However, GAs have been used in order to optimize tradi-
tional performance metrics for classification problems [13,
19, 23, 1], such as precision, recall, f-measure, and accuracy.
For example, Di Martino et al. [13] used GAs for calibrating
the parameters of Support Vector Machines (SVM) to opti-
mize the three aforementioned metrics. Liu et al. [23] use
an evolutionary algorithm as a stand-alone model for pre-
dicting defect prone classes with the goal of maximizing the
accuracy of the prediction. Khoshgoftaar et al. proposed
multi-objective genetic programming (GP) to automatically
generate classification trees that optimize the accuracy of
the prediction, controlling the size of the decision tree. As
reported in the survey by Azfal and Torkar [1] other vari-
ants of GPs have been used in order to (i) control the size of
evolutionary classification trees, (ii) to penalize misclassified
instances in the training set, (iii) to maximize the number of
correctly classified defect-prone classes (precision) at a fixed
level of recall. Recently, Canfora et al. [8, 9] proposed the
application of multi-objective genetic algorithms to generate
a set of classification models considering file size and recall
as two objectives to optimize. Yang et al. [38] used GAs
to optimize the ranks of defect-prone software components

predicted by simple Linear Regression model (LR) without
taking into account the inspection cost.

Previous GA-based and GP-based approaches for defect
prediction used classification algorithms (e.g., classification
trees and neural networks) and not regression models (our
baseline in this paper). Specifically, previous papers use GAs
for calibrating algorithms to predict the defect proneness as
a binary outcome (i.e., defective or non-defective artifacts)
while we use regression models that, by definition, predict
continuous values (e.g., number of defects) as done in [11]
when measuring the cost-effectiveness. The most important
difference with respect to previous approaches is that they
use traditional performance metrics for classification prob-
lem as fitness functions to optimize [13, 19, 23, 38]. As
explained in Section 2, traditional performance are not well-
suited to evaluate prediction since they give the same pri-
ority/importance to all defect prone software components,
independently from their size (cost) and the number of bugs
(effectiveness).

Unlike previous papers proposing evolutionary algorithms
for defect prediction, we use a different fitness function,
which measures the cost-effectiveness of regression models,
i.e., their ability to identify earlier software artifacts with
higher defect density.

4. EMPIRICAL EVALUATION
In this section, we present the design of the study we con-

duct to empirically evaluate the cost-effectiveness of our ap-
proach compared to traditional defect prediction approaches.

The study context consists of data from Java open-source
projects, whose characteristics are summarized in Table 1.
All steps of the data collection process are implemented in
Bash and are available as part of the replication package1.
To complete the dataset for the defect prediction task we
determine the number of bugs in releases n for each class
and for each project considering the data in the PROMISE
repository [27]. It is important to highlight that we do not
use the dataset available in [11]. The main reason is that
such dataset do not have many releases and thus, inter-
release prediction cannot be performed. Specifically, for
each project we use LOC and CK metrics (a reliable set of
metrics, well-tested on this task) from several releases and
evaluated the effectiveness of our approach in using them to
prioritize defect-prone classes in a cost-effective manner. It
is important to notice that, while in this paper we used only
LOC and the CK metric suite, other software metrics have
been used in literature as predictors for building defect pre-
diction models. However, we select the CK suite since it has
been widely used to measure the quality of Object-Oriented
(OO) software systems. Moreover, the purpose of this paper
is not to evaluate which is the best suite of predictors for
defect prediction, but to show the benefits of our GA-based
cost-aware training process.

We structure our empirical evaluation around the follow-
ing research questions:

RQ1: Does our cost-aware training process im-
prove the cost-effectiveness of GLM?

RQ2: Does our cost-aware training process im-
prove the cost-effectiveness of RT?

1http://tiny.uzh.ch/p0

http://tiny.uzh.ch/p0

Table 1: Java projects considered in the study.

System Release # Classes
% Defective Average #

Classes of Defects

Log4j
1.0 135 25.19 1.79
1.1 110 33.94 2.32
1.2 206 92.22 2.63

Lucene
2.0 196 46.43 2.94
2.2 248 58.06 2.88
2.4 341 59.53 3.11

Poi

1.5 237 59.49 2.43
2.0 315 11.78 1.05
2.5 387 64.42 2.00
3.0 443 63.57 1.78

Synapse
1.0 157 10.19 1.31
1.1 222 27.03 1.65
1.2 256 33.59 1.67

Velocity
1.4 197 74.62 1.42
1.5 215 66.05 2.33
1.6 230 33.91 2.44

Xalan

2.4 724 15.19 1.42
2.5 804 48.13 1.37
2.6 886 46.39 1.52
2.7 910 98.68 1.35

4.1 Research settings
We study the following independent factors:
Prediction algorithms. We use the implementations of

GLM and RT available in MATLAB [24]. Specifically, for
GLM, we use the glmfit routine to train the linear regres-
sion model using the identity function as the linking func-
tion [11]. For RT, we use the fitrtree routine with CART
algorithm for building the tree structure. We also employ
the Global Optimization Toolbox, particularly the ga routine,
which implements the GAs we use to re-calibrate GLM and
RT for the new fitness function proposed in this paper.

Training (release-project prediction). We conduct
our empirical evaluation in the context of release-project pre-
diction. In a real testing and maintenance context, release-
project prediction means using data from the former releases
to train the model used to predict faults for a new release.
In other words, to predict the defects of a release n of a
project, we train the model on the data of the project’s pre-
vious release n − 1. For example, for defect prediction we
consider as training set CK metrics and LOC (independent
variables) for release n− 1 and the defects (dependent vari-
able) on release n− 1. As the test set, we apply the trained
model to CK metrics and LOC (independent variables) of
release n and try to predict the defects affecting release n
(dependent variable).

Parameters setting. We employ the standard GA con-
figuration used for real-coded (float) problems:

• Population size. We set GAs with a population of 200
individuals, i.e., 200 for GLM and RT configurations.

• Initial population. For each release used as training set,
the initial population is uniformly and randomly gen-
erated within the solution spaces. We randomly and
uniformly generate the initial population in the inter-
val [−10; 10], which corresponds to the default config-
uration for the ga routine.

• Number of generations. We set the maximum number
of generations equal to 400.

• Crossover function. We use the blend crossover (BLX-
α) [16], i.e., one of the most used and efficient crossover
operators for real-coded (float) chromosomes. We use
the standard configuration of α = 0.5 as previous work

in numerical optimization reported that BLX-0.5 per-
forms better than BLX operators with other α val-
ues [16].

• Mutation function. We use the polynomial mutation
function with distribution index ηm = 20, which is
one of the most used mutation operators for real-coded
GAs [12].

• Selection Function. For the selection function we used
the roulette wheel selection schema.

To allow reliable detection of statistical differences be-
tween the traditional regression models and GAs-based ones,
we run the GAs 30 times on each training set and evaluate
the obtained models onto the corresponding test set.

4.2 Evaluation
To compare the prediction performance of traditional mod-

els and the proposed GA-based approach, we use the cost-
effective ROC (ROC-CE), as proposed and employed by
previous work [11, 32]. The ROC-CE plots on the x-axis
the cumulative number of LOC to inspect for the predicted
classes (cost) and on the y-axis the corresponding cumula-
tive number of defects (effectiveness) reached by a specific
model when considering the classes order by their predicted
number of defects. To ease the comparison across models,
we use the Peffort metric [11]. This metric measures the
area under the cost-effective ROC curve (AUC-CE) of the
evaluated prediction model with respect to the AUC-CE of
the optimal classifier, i.e., the ideal classifier that sorts the
defect-prone classes in the test set according to the actual
number of defects. As described by D’Ambros et al. [11],
Peffort = 1 −4effort, where 4effort is the difference between
the AUC-CE of the optimal classifier and the AUC-CE of
the prediction model under analysis. The Peffort metric as-
sumes values within the range [0; 1] and its optimal value
is equal to 1 (when the corresponding prediction model is
equivalent to the optimal curve).

We analyze the results to check whether the differences
between the Peffort scores produced by the compared algo-
rithms over 30 independent runs are statistically significant.
We use the Wilcoxon Rank Sum test with a significance level
α = 0.05. The Wilcoxon test is non-parametric and does not
require any assumption upon the underlying data distribu-
tion; we perform a two-tailed test because we do not know
a priori whether the difference is in favor of GA or the tra-
ditional models. Following the guidelines provided in [2] for
assessing the performances of randomized algorithms we use
the Vargha-Delaney (Â12) statistical test: a non-parametric
test for measuring the magnitude of the difference between
the Peffort scores achieved with different algorithms. An ef-
fect size Â12 > 0.5 means that the Peffort scored yielded by
GAs are better than the score produced by RT (or GLM)

over 30 independent runs. Â12 < 0.5 means RT (or GLM) is

better than GAs in terms of Peffort, while Â12 = 0.5 means
there is no difference between the compared algorithms.

5. RESULTS
Table 2 reports the Peffort scores achieved by (i) traditional

GLM, (ii) traditional RT, (iii) GLM trained with GAs us-
ing Equation (3) as fitness function (GLM-GA), and (iv)
RT trained with GAs for optimizing Equation (3) (RT-GA).
More specifically, for RT-GA and GLM-GA Table 2 report

Table 2: Average Peffort scores by models in term of number of defects for test sets over 30 independents runs.

System Training Set Test Set
RT RT-GA GLM GLM-GA

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Log4j
1.0 1.1 0.6920 - 0.7461 (+7.81%) 0.0272 0.7734 - 0.8407 (+8.71%) 0.0146
1.1 1.2 0.4533 - 0.5938 (+30.98%) 0.0465 0.5369 - 0.6728 (+25.33%) 0.0336

Lucene
2.0 2.2 0.6386 - 0.7947 (+24.45%) 0,0174 0.5284 - 0.7711 (+45.93%) 0.0190
2.2 2.4 0.5167 - 0.6968 (+34.84%) 0.0378 0.6463 - 0.7660 (+18.53%) 0.0036

Poi
1.5 2.0 0.3860 - 0.5283 (+36.84%) 0.0241 0.3945 - 0.6876 (+74.31%) 0.0028
2.0 2.5 0.4563 - 0.6250 (+36.95%) 0.0252 0.6665 - 0.8595 (+28.96%) 0.0684

Synapse
1.0 1.1 0.5448 - 0.5691 (+4.45%) 0.0030 0.6528 - 0.5231 (-19.87%) 0.0063
1.1 1.2 0.6440 - 0.6802 (+5.61%) 0.0354 0.5356 - 0.6521 (+21.74%) 0.0144

Velocity
1.4 1.5 0.8232 - 0.8698 (+5.66%) 0.0102 0.7992 - 0.9113 (+14.03%) 0.0027
1.5 1.6 0.4505 - 0.8082 (+79.45%) 0.0314 0.3531 - 0.8162 (+131.18%) 0.0028

Xalan
2.4 2.5 0.4279 - 0.7319 (+71.04%) 0.0925 0.4043 - 0.8472 (+109.53%) 0.0070
2.5 2.6 0.5472 - 0.8175 (+49.40%) 0.0068 0.5219 - 0.8388 (+60.73%) 0.0007
2.6 2.7 0.4247 - 0.9141 (+115.22%) 0.0302 0.2845 - 0.9679 (+240.19%) 0.0035

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

KLOC

%
 C

um
ul

at
iv

e
D

ef
ec

ts

GA−GLM
GLM

(a) GLM for Lucene 2.0 → 1.6

Figure 3: Comparison between Genetic Algorithms
and Regression Algorithms when evaluating the
achieved cost-effectiveness

the mean Peffort scores achieved over 30 independent runs
as well as the corresponding standard deviation. From the
analysis of results, we can observe that GA-based regres-
sion models (GA-RT and GA-GLM) significantly outper-
form their traditional counterparts in terms of Peffort. In-
deed, for GLM we observe an overall improvement of 58.40%
on average, with minimum improvement of +8.71% for Log4j
(version 1.1) and +240.19% for Xalan version 2.7. For RT,
the Peffort metric improves by up to +115%, with the im-
provement being at or above 30% in 8 out of 13 releases
(38.67% on average). To provide a graphical example for our
results, Figure 3, shows the AUC-CE (AUC cost-effectiveness)
obtained by GLM and GLM-GA for Lucene when using ver-
sion 2.0 as training set and version 2.2 as test set. We can
observe that the first 10% of KLOC to inspect actually con-
tains roughly the same number of actual defects (around
20%). However, when considering the first 30% of KLOC to
inspect, the traditional GLM yields roughly 40% of defects,
while the GA approach discovers over 65%.

Cross-comparing the results in Table 2 with the charac-
teristics of projects and releases in Table 1, we observe that
the difference in predictive power is especially noticeable be-
tween releases where only few classes are defective. In these
cases, traditional models fall short and are unable to ac-
curately predict which classes are more defect-prone. We
consider some examples. In release 2.0 of Poi, only 11.78%
of classes (37 out of 315) have been found to contain bugs. If
the developers would pick the first 25% of lines of code pre-
dicted to contain defects for further investigation using the
traditional RT, this will yield them only 18% of actual bugs
(7 out of 39 bugs). Using the GA-based model (GA-RT),
developers will actually find 28% of actual bugs (11 out of
39 bugs). Overall, for the scenario of effectively allocating

Table 3: Wilcoxon test p-values of the hypothe-
sis GAs > Regression Tree (or Generalized Linear
Model) in terms of Peffort for defect prediction.

System Test Set
GA > RT GA > GLM

p-value Â12 Magn. p-value Â12 Magn.

Log4j
1.1 < 0.01 1.00 L < 0.01 1.00 L
1.2 0.01 1.00 L < 0.01 1.00 L

Lucene
2.2 < 0.01 1.00 L < 0.01 1.00 L
2.4 0.01 1.00 L < 0.01 1.00 L

Poi
2.0 < 0.01 1.00 L < 0.01 1.00 L
2.5 < 0.01 1.00 L < 0.01 1.00 L
3.0 < 0.01 1.00 L < 0.01 1.00 L

Synapse
1.1 < 0.01 0.82 L 0.99 0.1 L
1.2 < 0.01 0.75 L < 0.01 1.00 L

Velocity
1.5 < 0.01 1.00 L < 0.01 1.00 L
1.6 < 0.01 1.00 L < 0.01 1.00 L

Xalan
2.5 < 0.01 1.00 L < 0.01 1.00 L
2.6 < 0.01 1.00 L < 0.01 1.00 L
2.7 < 0.01 1.00 L < 0.01 1.00 L

limited resources with the goal of maximizing the positive
impact on the development process, our approach offers a
stronger solution that existing models. Table 3 reports the
results of the Wilcoxon test and of the Vargha-Delaney (Â12)
statistical test. In all cases the GA leads to a significant im-
provement for both RT and GLM, with the effect size being
large for all test sets.

Summary. Regression models trained by GAs signif-
icantly outperform traditional models in terms of cost-
effectiveness, especially when there is a small proportion
of classes with defects.

Running Time. In terms of execution time, training
RT and GLM with GAs requires more time compared to
traditional MSE-based training algorithms (which require a
few seconds on average). Specifically, in our study, the GA
requires on average 2min 6s to train RT and 2min 36s to
train GLM to converge. However, this increase in running
time presents a small trade-off compared to the ability to
better prioritize defect-prone classes. For this analysis, the
execution time was measured using a machine with an Intel
Core i5 processor running at 2.4GHz with 16GB RAM and
using the MATLAB cputime routine, which returns the total
CPU time (in seconds) used by a MATLAB script.

6. THREATS TO VALIDITY
This section discusses the threats that could affect the

validity of our research and the reported study.
Construct validity. Some of the measures we used to

assess the models (Peffort metric [25] [11]) are widely adopted
in the context of defect prediction. Specifically, we rely on
Peffort metric because it allows us to perform a better eval-
uation, since, as pointed out by D’ambros et al. [11], it

denotes the difference between the area under the curve of
the optimal classifier and the area under the curve of the
prediction model. We use the amount of LOC to inspect
as proxy indicator of the effort required to analyze/test the
predicted software modules, as also done in many previous
papers [11, 25, 18, 33, 34, 8]. We are aware that such a mea-
sure is not necessarily representative of the real effort cost,
although proportional to it [11]. In addition, another threat
to construct validity can be related to the used metrics and
data sets. Although, for our defect prediction analysis we
have performed our study on widely used data sets from the
PROMISE repository, we cannot exclude that they can be
subject to imprecision and incompleteness.

Internal validity. We mitigated the influence of the GA
randomness when building the model by repeating the pro-
cess 30 times and reporting the achieved mean values. Also,
it might be possible that the performances of the proposed
approach and of the approaches being compared depend on
the particular choice of the machine learning technique. In
this paper, we evaluated the proposed approach using two
statistical models—GLM and RT—that have been exten-
sively used in previous research on defect prediction [11].
We also statistically compared the various model using the
Wilcoxon, non-parametric test, to check whether the differ-
ences between the Peffort scores produced by the compared
algorithms (over 30 independent runs) are statistically sig-
nificant or not.

External validity. The techniques we tried may show
different results when applied to other software systems. To
alleviate this, we chose 6 systems with unrelated character-
istics. All projects we selected are established, have a long
history, and involve many different developers in different
phases of their life cycle. The sizes of the systems and the
number of defects between releases varies significantly. Nev-
ertheless, there is always a threat of bias regarding results
stemming from empirical work [26].

7. CONCLUSION
In this paper, we hypothesized that current approaches for

defect prediction may not reach their full potential, as they
are trained on a task that is different from their final target.
Specifically, current approaches based on statistical models
are trained to find the best fit to predict the raw number of
defects in artifacts, while the actual target is to rank them
according to the most cost-effective predictions. To investi-
gate this hypothesis, we presented a novel approach based
on GA and assessed it through an empirical evaluation.

The proposed GA-based approach is designed to overcome
limitations of traditional approaches, modifying the training
algorithm so that artifacts likely to exhibit more defect (at
same level of inspection cost) are given higher priority. The
results of the empirical evaluation we conducted, involving
6 software projects, show that our GA-based approach sig-
nificantly outperforms traditional models. In some cases,
it can yield classes containing multiple times as many de-
fects in the first 10% or 20% of lines of code to inspected
compared to traditional approaches, thus providing a more
solid base for resource allocation. Results also show that,
in the considered evaluation, the approach improves predic-
tions especially when there are few actual defects occurring,
a situation in which traditional models make comparatively
inaccurate predictions.

Future research will need to investigate if our approach

can be applied to other prediction models (e.g., Bayesian or
neural networks) and to other software metrics (e.g., his-
torical bug tracking data or socio-technical information).
Moreover, since predictions made by both traditional and
optimized models degrade if a project contains a very large
number of classes or if different releases show different (het-
erogeneous) characteristics [7, 39], further research should
be conducted to improve predictions for very large projects.

8. REFERENCES
[1] W. Afzal and R. Torkar. On the application of genetic

programming for software engineering predictive
modeling: A systematic review. Expert Systems with
Applications, 38(9):11984 – 11997, 2011.

[2] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In Software Engineering (ICSE),
2011 33rd International Conference on, pages 1–10,
May 2011.

[3] E. Arisholm and L. C. Briand. Predicting fault-prone
components in a java legacy system. In Proceedings of
the 2006 ACM/IEEE international symposium on
Empirical software engineering, ISESE ’06, pages
8–17. ACM, 2006.

[4] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
J. Syst. Softw., 83(1):2–17, January 2010.

[5] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of
the 35th International Conference on Software
Engineering, pages 712–721, 2013.

[6] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE Trans. Software Eng.,
22(10):751–761, 1996.

[7] N. Bettenburg, M. Nagappan, and A. E. Hassan.
Towards improving statistical modeling of software
engineering data: think locally, act globally! Empirical
Software Engineering, 20(2):294–335, 2015.

[8] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto,
A. Panichella, and S. Panichella. Multi-objective
cross-project defect prediction. In The 6th
International Conference on Software Testing,
Verification and Validation, pages 252–261, 2013.

[9] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto,
A. Panichella, and S. Panichella. Defect prediction as
a multi-objective optimization problem. Software
Testing, Verification and Reliability, 25(4):426–459,
June 2015.

[10] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software Eng.,
20(6):476–493, June 1994.

[11] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: A benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[12] D. Deb and K. Deb. Investigation of mutation schemes
in real-parameter genetic algorithms. In Swarm,
Evolutionary, and Memetic Computing, volume 7677
of Lecture Notes in Computer Science, pages 1–8.
Springer Berlin Heidelberg, 2012.

[13] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro.
A genetic algorithm to configure support vector
machines for predicting fault-prone components. In
Product-Focused Software Process Improvement,
volume 6759 of Lecture Notes in Computer Science,
pages 247–261. Springer Berlin Heidelberg, 2011.

[14] M. Elish. A comparative study of fault density
prediction in aspect-oriented systems using MLP,
RBF, KNN, RT, DENFIS and SVR models. Artificial
Intelligence Review, 42(4):695–703, 2014.

[15] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering. IEEE
Trans. Software Eng., 38(6):1276–1304, Nov 2012.

[16] F. Herrera, M. Lozano, and A. M. Sánchez. A
taxonomy for the crossover operator for real-coded
genetic algorithms: An experimental study.
International Journal of Intelligent Systems,
18(3):309–338, 2003.

[17] T. Jiang, L. Tan, and S. Kim. Personalized defect
prediction. In IEEE/ACM 28th International
Conference on Automated Software Engineering
(ASE), pages 279–289, Nov 2013.

[18] Y. Kamei, S. Matsumoto, A. Monden, K.-i.
Matsumoto, B. Adams, and A. Hassan. Revisiting
common bug prediction findings using effort-aware
models. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1–10, 2010.

[19] T. Khoshgoftaar, N. Seliya, and Y. Liu. Genetic
programming-based decision trees for software quality
classification. In Proceedings of the 15th IEEE
International Conference on Tools with Artificial
Intelligence, pages 374–383, Nov 2003.

[20] M. Kim, J. Nam, J. Yeon, S. Choi, and S. Kim.
REMI: Defect prediction for efficient api testing. In
Proceedings of ESEC/FSE, pages 990–993, 2015.

[21] S. Kpodjedo, F. Ricca, P. Galinier, Y. Guéhéneuc, and
G. Antoniol. Design evolution metrics for defect
prediction in object oriented systems. Empirical
Software Engineering, 16(1):141–175, 2011.

[22] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Trans. Software Eng., 34(4):485–496, 2008.

[23] Y. Liu, T. M. Khoshgoftaar, and N. Seliya.
Evolutionary optimization of software quality
modeling with multiple repositories. IEEE Trans.
Software Eng., 36(6):852–864, Nov. 2010.

[24] MATLAB. version 7.10.0 (R2010b). The MathWorks
Inc., Natick, Massachusetts.

[25] T. Mende and R. Koschke. Revisiting the evaluation
of defect prediction models. In Proceedings of the 5th
International Conference on Predictor Models in
Software Engineering, page 7. ACM, 2009.

[26] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Trans. Software Eng., 33(1):2–13, Jan 2007.

[27] T. Menzies, R. Krishna, and D. Pryor. The promise
repository of empirical software engineering data,
2015.

[28] T. Menzies, Z. Milton, B. Turhan, B. Cukic, and

Y. J. A. Bener. Defect prediction from static code
features: current results, limitations, new approaches.
Automated Software Engineering, 17:375–407, 2010.

[29] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In Proceedings of
the 30th international conference on Software
Engineering, pages 181–190. ACM, 2008.

[30] A. Nelson, T. Menzies, and G. Gay. Sharing
experiments using open-source software. Software:
Practice and Experience, 41(3):283–305, 2011.

[31] G. Pai and J. Bechta Dugan. Empirical analysis of
software fault content and fault proneness using
bayesian methods. IEEE Trans. Software Eng.,
33(10):675–686, 2007.

[32] A. Panichella, R. Oliveto, and A. De Lucia.
Cross-project defect prediction models: L’union fait la
force. In IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week,
pages 164–173, Feb 2014.

[33] F. Rahman and P. Devanbu. How, and why, process
metrics are better. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 432–441. IEEE Press, 2013.

[34] F. Rahman, D. Posnett, and P. Devanbu. Recalling
the ”imprecision” of cross-project defect prediction. In
Proceedings of the ACM-Sigsoft 20th International
Symposium on the Foundations of Software
Engineering (FSE-20), page 61, Research Triangle
Park, NC, USA, 2012. ACM.

[35] L. Rokach and O. Maimon. Decision trees. In The
Data Mining and Knowledge Discovery Handbook,
pages 165–192. 2005.

[36] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies.
Class level fault prediction using software clustering.
In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages
640–645, Nov 2013.

[37] M. Shepperd, D. Bowes, and T. Hall. Researcher bias:
The use of machine learning in software defect
prediction. IEEE Trans. Software Eng., 40(6):603–616,
June 2014.

[38] X. Yang, K. Tang, and X. Yao. A learning-to-rank
approach to software defect prediction. IEEE
Transactions on Reliability, 64(1), March 2015.

[39] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou.
Towards building a universal defect prediction model.
In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages
182–191. ACM, 2014.

[40] T. Zimmermann, N. Nagappan, and A. Zeller.
Predicting bugs from history. Software Evolution,
pages 69–88.

[41] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Proceedings of the
Third International Workshop on Predictor Models in
Software Engineering, PROMISE ’07, pages 1–9. IEEE
Computer Society, 2007.

	Introduction
	Background and problem
	Previous work
	Problem statement
	Generalized linear regression
	Regression Tree

	Proposed solution
	Training Regression Models With GAs

	Empirical Evaluation
	Research settings
	Evaluation

	Results
	Threats to Validity
	Conclusion
	References

