
Understanding Developers’ Needs on
Deprecation as a Language Feature

Anand Ashok Sawant
Delft University of Technology

Delft, The Netherlands
A.A.Sawant@tudelft.nl

Maurício Aniche
Delft University of Technology

Delft, The Netherlands
m.f .aniche@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.vanDeursen@tudelft.nl

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT
Deprecation is a language feature that allows API producers to mark
a feature as obsolete. We aim to gain a deep understanding of the
needs of API producers and consumers alike regarding deprecation.
To that end, we investigate why API producers deprecate features,
whether they remove deprecated features, how they expect con-
sumers to react, and what prompts an API consumer to react to
deprecation. To achieve this goal we conduct semi-structured inter-
views with 17 third-party Java API producers and survey 170 Java
developers. We observe that the current deprecation mechanism in
Java and the proposal to enhance it does not address all the needs
of a developer. This leads us to propose and evaluate three further
enhancements to the deprecation mechanism.

KEYWORDS
API, deprecation, Java
ACM Reference Format:
Anand Ashok Sawant, Maurício Aniche, Arie van Deursen, and Alberto
Bacchelli. 2018. Understanding Developers’ Needs on Deprecation as a
Language Feature. In Proceedings of ICSE ’18: 40th International Conference
on Software Engineering (ICSE ’18). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180170

1 INTRODUCTION
Concerning deprecation, the official Java documentation states: “A
program element annotated @Deprecated is one that programmers
are discouraged from using, typically because it is dangerous, or be-
cause a better alternative exists” [26]. The deprecation mechanism
is a commonly used practice [2].

Deprecation as a language feature has been adopted in many
languages, such as PHP and Java. However, there is no uniform
implementation or support of deprecation across languages. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180170

example, Java exposes its deprecation mechanism as an annotation
captured by the compiler to throw a warning when a program
element marked as deprecated is invoked; in PHP deprecation is
added as a property to a function and throws a runtime warning.

Furthermore, languages have been changing the deprecation
mechanism in the search for improvements, as evidenced by the
Java language designers’ proposal to revamp the Java deprecation
mechanism for the third time [16]. According to the Java language
designers, the deprecation mechanism has been open to misuse
and the inconsistent removal of deprecated features creates con-
fusion surrounding the fate of deprecated features. In their words,
this led to a situation where “everybody was confused about what
deprecation actually meant, and nobody took it seriously.”

This variability in deprecation mechanisms across languages and
volatility of implementations shows that deprecation as a whole is
an unsolved problem. There is no current understanding as to what
constitutes an effective deprecation mechanism. Currently, API
consumers do not appear to react to deprecation [24, 29] despite
API producers taking great care in documenting the deprecation
and the changes involved [2].

In this paper, our goal is to determine the characteristics that a
deprecation mechanism should possess and whether these are de-
sirable amongst developers and feasible to implement, particularly
in a mainstream language such as Java. We do this conducting a
study set up in two phases: An exploratory investigation, followed
by the evaluation of the desirability and feasibility of enhancements
we propose to the deprecation mechanism.

In the first part of our study, we investigate why API producers
deprecate features, how they expect the API consumers to react,
whether they remove deprecated features from their APIs, and what
the associated challenges arewith using the deprecationmechanism.
To that aim, we use an interpretive descriptive technique to conduct
and analyze interviews with 17 developers who work on APIs
both in industry and open source. We challenge our findings by
conducting a survey with 170 Java professionals.

With the insights gained from API producers and consumers
coupled with interface usability guidelines [19], in the second part
of this study, we propose enhancements to the deprecation mecha-
nism.We evaluate the feasibility of this proposal by discussing them
with two Java language designers (one of whom is the promoter of
the current revamp of the existing Java deprecationmechanism) and
its desirability among the aforementioned 170 Java professionals.

https://doi.org/10.1145/3180155.3180170
https://doi.org/10.1145/3180155.3180170

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. A. Sawant, M. F. Aniche, A. van Deursen, A. Bacchelli

2 THE DEPRECATION MECHANISM IN JAVA
Deprecation is provided by most programming languages, as a way
for developers of APIs and libraries to avoid introducing breaking
changes when classes, fields, or methods are to be removed.

In the original documentation of deprecation, we read: “Dep-
recation is a reasonable choice in all these cases [where the API
is buggy, insecure, disappearing in a future release, or encourag-
ing bad coding] because it preserves backward compatibility while
encouraging developers to change to the new API” [26].

Java first introduced the deprecation mechanism in the form of a
Javadoc @deprecated annotation, which provides information on
why a feature was deprecated and what replacement feature should
be used. Once source code annotations were introduced in Java
1.5, Java introduced a @Deprecated annotation. According to the
Java language specification, this annotation generates a compiler
warning when a deprecated feature is used in source code. Modern
IDEs pick up this warning and display the warning along with the
accompanying Javadoc (Figure 1).

Recently, there has been a proposal to change the deprecation
mechanism in Java (JEP 277 [16]). Stuart Marks (lead Java and Open-
JDK language designer and promoter of the changes in the depre-
cation mechanism) stated that deprecation warnings are largely
ignored by API consumers [17]. Marks attributed this behavior to
two main reasons (which he captured by observing the behavior of
consumers who use the Java SE API):

(1) Potential misuse: The current implementation of the dep-
recation mechanism is open to potential misuse: “the @Dep-
recated annotation ended up being used for several different
purposes” [16]. This led to API consumers not taking depre-
cation warnings seriously.

(2) Inconsistent removal: There is no consistent removal pro-
tocol of deprecated features, leading to: “an unclear message
[regarding the future of a deprecated feature] being deliv-
ered to developers about the meaning of @Deprecated” [16].
This led clients to leave references to a deprecated features
in the source code, given that there is no danger of the code
breaking when updating to a newer version of the API.

Given the aforementioned issues, the Java language developers
put forward a set of enhancements in the JEP [16]:

(1) forRemoval(): A method named ‘forRemoval()’ in the dep-
recation class, which sets a boolean flag to either true or false,
where true signifies that the feature is going to be removed
in the future and false signifies that there are no plans to
remove the deprecated feature.

(2) since():Amethod named ‘since()’ in the deprecation class, to
set a string during the deprecation of a feature to indicate the
version of the API in which this feature has been deprecated.

The involved Java language developers expect that these en-
hancements would remove some of the confusion surrounding
deprecation. In addition to enhancing the deprecation mechanism,
the Java language designers are going to remove deprecated fea-
tures that are currently present in the Java SE API. Their hope is
that these initiatives will serve as an inspiration to other API pro-
ducers to remove their deprecated features and to API consumers
to take deprecation seriously and consider reacting to it. Overall,
they aim to change the culture surrounding deprecation.

Figure 1: Example of deprecation warning in the IDE

3 METHODOLOGY
The overall goal of this paper is to determine the characteristics that
a deprecation mechanism should possess and whether these are
desirable among developers and feasible to implement in a main-
stream language such as Java. This study has two parts: In the first
part, we start by deeply understanding how the deprecation mech-
anism is used and perceived by both API producers and consumers;
in the second part, we propose extensions to Java’s deprecation
mechanism and determine the feasibility of the same. This section
describes the methodology for the first part, the methodology for
the second part can be found in Section 6.

In the first part of our study, we propose four research questions:
RQ1: WhydoAPI producers use the deprecationmechanism?
In this RQ, we identify why API producers use the deprecation
mechanism. Such an understanding will help us obtain a catalog
of reasons adopted by API producers to deprecate features.

RQ2: When and why do API producers remove deprecated
features? The Java language designers claim that inconsistent
removal policies related to deprecated features have led to confu-
sion surrounding the implications of deprecation. Having no clear
policy of removal sends an unclear message to API consumers. In
this RQ, we investigate as to what the different removal protocols
are and why API producers adopt them.

RQ3: How doAPI producers expect their consumers to react
to deprecation? It is an unverified claim that API producers
always require their consumers to react to deprecation. In this
RQ, we seek to understand and analyze when API producers feel
that a reaction should take place.

RQ4: Why do API consumers react to deprecated features?
From our first research question we obtain a catalog of reasons
why API producers may deprecate a feature. In this RQ, we in-
vestigate the consumers’ perspective on deprecation.

3.1 Research Method
Interviews with API producers. To gain an in-depth understand-
ing of how API producers perceive the current implementation of
the deprecation mechanism in Java, we conduct a series of semi-
structured interviews [15] with industrial and open source software
(OSS) API producers.

Before the interviews, (1) we analyze the official Java documenta-
tion and study the deprecation mechanism that elucidates when the
mechanism should be used, (2) we look at the improvements made
to the deprecation mechanism in Java 5 and finally (3) we look at

Understanding Developers’ Needs on Deprecation as a Language Feature ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the proposed enhancement for Java 9. This helps us understand the
scenarios in which deprecation is used; this understanding was key
in developing and conducting the interviews.

The questions asked during the interviews are based on a guide-
line derived from our research questions. We ask interviewees
questions such as “When do you decide to change an API?” and
“Are there any steps that would lessen the burden to upgrade?”. We
iteratively refine this guideline before every interview, based on
the responses. Interviews are conducted in English and transcribed.

We follow an interpretive descriptive approach [31], after an
explorative research method, originating from the social sciences,
that is an inductive approach to analyzing interviews and deriving
theories. As part of the interpretive descriptive technique, each
interview transcript was analyzed and broken into smaller parts,
where each part was assigned a code based on its content. We
clustered these codes based on similarity, to let common themes
emerge from the interviews. When we encounter the same code
repeatedly across multiple interviews, i.e., saturation, we adjust our
interview guideline to explore other topics. Each research question
has its own set of codes, which we then present as our results.
Survey with API producers and consumers. To challenge the
findings from the interviews, we send out an anonymized survey
made up of 29 questions to developers. Our survey consists of
questions for both API producers and API consumers, based on the
role that the developer plays. This is so that we get both perspectives
on the Java deprecation mechanism. It followed the structure of
the theory developed as a result of the interviews. The survey
respondents were asked to rank the degree (on a five-point Likert
scale) to which they agreed with a theme that emerged from the
interview process. When a respondent completely disagrees with
one of the statements, we ask the respondent to provide us with
their perspective. The survey is in our replication package [27].

3.2 Participant Selection
Interviews. We contacted API producers who work for large com-
panies in two different countries (The Netherlands and Brazil) and
those that actively work on well-known open source projects. We
contacted the industrial developers by mailing the CTOs of certain
companies asking to be put in contact with producers of APIs. In the
case of open source developers, we mailed the internal developers
of JUnit, Spring and Mockito asking for an interview. We chose
these three projects due to (1) the popularity of their API (According
to Sawant et al. [28], JUnit is the first, Spring the third, and Mockito
the 10th most used APIs on GitHub), and (2) convenience to access
developers working on these projects. Overall this resulted in 17
interview participants (identified as P1 - P17 in this paper). The
background of the participants is summarized in Table 1.
Survey.We aimed to reach as many Java developers from diverse
backgrounds. To that end, the survey was spread via Twitter, Java
mailing lists, country-specific developer mailing lists, and compa-
nies. The survey ran for a period of 3 months. Overall, we obtained
170 responses from which we could derive valid results. The survey
respondents were primarily developers (142 out of 170), the rest
was composed of architects (10 out of 170), researchers (9 out of
170), analysts (1 out of 170), manager (3 out of 170), consultants (1
out of 170) and testers (4 out of 170). 138 of our respondents work

Table 1: Profiles of the interviewed API producers

Company/ Experience
ID Domain Project (in years)

P1 Industry Large consultancy 6
P2 Industry Large consultancy 7
P3 Industry Large consultancy 6
P4 Industry Large bank 6
P5 Industry Large bank 5
P6 Industry Large consultancy 4
P7 Industry Large SW company 18
P8 Industry Large SW company 16
P9 Industry Large SW company 21
P10 Industry Startup 6
P11 Industry Startup 9
P12 Industry Public sector 15
P13 Industry Small SW company 9
P14 Industry XWiki 16
P15 OSS Spring Framework 8
P16 OSS JUnit 17
P17 OSS Mockito 4

in industry and the rest on open source projects. Our respondents
originate primarily from countries such as USA, Italy, Brazil, India
and The Netherlands. On average our respondents have 11 years of
experience of working with Java.

3.3 Limitations
One of the risks of a qualitative study is that determining the va-
lidity of our findings is a difficult undertaking [9]. We followed
interpretive descriptive interview guidelines closely. Despite our
best efforts, some limitations exist, in the following, we explain
how we try to minimize them.
Generalizability. Our selection of developers to interview might
not be representative of the Java API producer community. To
mitigate this limitation, we questioned three different sets of devel-
opers for their opinions from both industry and open source based
projects. Furthermore, we surveyed 170 developers who act as API
producers and consumers, to challenge our findings. If the study
is repeated using a different set of developers, the results may be
different. However, we found a large agreement concerning the
view on deprecation of interviewees and survey respondents.
Interviewer bias. Our own biases may have played a role when
interviewing developers, e.g., by leading interviewees to provide
more desirable answers [11]. To mitigate this issue, we challenged
and triangulated our findings by conducting a survey with API
producers and consumers. We sent our survey out via different
media such as Twitter and developer forums. Given this, we do
not know the exact context of the population that has accessed
our survey. Due to this, we cannot know the exact response rate.
However we can report that a total of 535 developers started our
survey and 170 (32%) of them filled the entire survey.
Credibility. Question-order effect [30] (a phenomenon where one
question could provide context for the next one) may lead our inter-
viewees and survey respondents to specific answers. One approach

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. A. Sawant, M. F. Aniche, A. van Deursen, A. Bacchelli

It is no longer
supported

It contained non-
functional issues

It encouraged bad
coding practices
Better features have
been developed

It is no longer
required
It contained
functional issues

It marks a
feature as beta

Never Almost never Neutral Almost every time

00 40% 80%

Every time

40%80%

Figure 2:Motivations to deprecate a feature according toAPI
producers, by decreasing frequency

to address this bias could have been to randomize the order of
questions. In this study, we decided to order the questions based
on the order in which decisions are taken when deprecating a fea-
ture. Social desirability bias [8] (i.e., an interviewee’s tendency to
give a socially acceptable answer to appear in a positive light) may
have influenced answers in our interview and survey. To mitigate
this issue, we informed participants that the responses would be
anonymous and evaluated in a statistical form.

4 RESULTS
4.1 RQ1: Why do API producers use the

deprecation mechanism?
We ask API producers whether and why they find the deprecation
mechanism relevant and what motivates them to use it. From the
interviews and the Java documentation on deprecation, seven main
reasons as to why developers deprecate part of their API emerge:

(1) Old interface encourages bad practices
(2) New/updated feature supersedes existing one
(3) Usage of the feature is unnecessary
(4) Functional issue in current implementation
(5) Non-functional issue in current implementation
(6) No longer provide a feature
(7) Mark as beta
The first three reasons emerge from documentation. Reasons

2 - 6 are mentioned by our interviewees, with reason 1 the only
unmentioned one.We included these seven main reasons behind
deprecation in our survey that was sent to developers. In our survey,
API producers were asked how frequently they had used one or
more of the reasons; Figure 2 reports the results. We also asked
both API producers and consumers if they had encountered any
other reasons behind deprecating a feature. Within 170 responses
we obtained no more reasons behind deprecation.

Reason 1 is the most popular reason behind deprecation as re-
ported by our survey’s respondents. Reasons 2-6 are the ones that
all our interviewees agreed upon as being those that they have
used in their own APIs. API producers in our survey also agreed
that these are common/frequent reasons that they have used to
deprecate a feature.

Reason 7 was mentioned by interviewee P16, whose team unex-
pectedly uses the deprecation mechanism in Java to mark a feature
as beta or experimental. Interviewee P16 did acknowledge this as is
a misuse of the deprecation mechanism, but they found it effective.
P14mentioned that in their API they faced a similar dilemma, where
they wanted to explicitly indicate to an API consumer that a feature
being used was new/experimental. However, instead of perverting
the meaning of deprecation, they introduced their own annotation
@Unstable that marked in the documentation that caution should
be exercised when using a new feature.

Orthogonal to all the motivations behind deprecation, it emerged
that deprecation is an effective, yet imperfect communication chan-
nel between API producers and the API consumers. Interviewee
P17 put it as: “[deprecation is] still the best communication method
as of today”. He went on to further state that the language feature
of deprecation makes it easier to tell a developer that uses a dep-
recated feature: “Hey! Be aware! We will remove this feature later,
just so you know”. This advantage of deprecation is not restricted to
the open source software world but is found to be quite important
in industry as well. Interviewee P2 said that they find it important
“when stopping an existing service, this communication should
happen at the time when we are thinking of breaking an existing
service”. The industrial API producers find it useful to let their
customers know that a certain service that they might be using
is going to disappear. Nevertheless, the low reaction rates of API
consumers reported in literature [24, 29] underlines that messages
sent through this channel (regardless of how accurately they are
written [2]) are often not acted upon, thus raising concerns on its
actual effectiveness, also on our interviewees.

One stated advantage of deprecation is that a developer is given
instant feedback in the IDE when using a deprecated feature. De-
spite this, some of our interviewees (P5, P6, P7, P10) expressed the
view that there might be a better way to communicate this change
to the consumer. In the opinion of these participants, this warning
might be a bit of a later point, as it would require developers to
go through each file in the IDE to see if there are any deprecated
features that are being used. This happens only after an upgrade
is made to a newer version, but the notification only reaches the
developers at the last moment, thus necessitating an alternative
channel of communication.

The deprecation mechanism is viewed as an interface for
communication with the API consumer. However, it is open
to misuse and has shortcomings.

4.2 RQ2: When and why do API producers
remove deprecated features?

Most API producers (48%) among our survey respondents indicated
that they usually remove a feature two or more releases after its
deprecation. Despite most of the positive votes for this policy, only
12% of developers indicate that they always remove a feature after
two releases, whereas 22% indicate that they do this almost every
time and 29% say they occasionally do this.

The second most popular removal pattern among our survey
respondents was to never remove a deprecated feature. This may be

Understanding Developers’ Needs on Deprecation as a Language Feature ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

at the basis of the lack of reaction by clients to deprecation. 16% of
developers say that they always choose to not remove a deprecated
feature, 15% say that they do this almost every time and 27% say
that they do this occasionally. Only 25% of the respondents say that
they have never adhered to this behavior.

Our survey respondents also indicated that they remove dep-
recated features in an upcoming release or in one release after
the next immediate one. However, none of these responses had
too much support. Developers do not appear to be very keen on
cleaning up their code base after deprecating a feature.

Regarding why developers decide (not) to remove a deprecated
feature, from the survey results we get the sense that there is a large
variance in removal policies of deprecated features, a fact echoed
by Stuart Marks (proponent of JEP 277) [17].

Interviewee P8 mentioned that they never remove a deprecated
feature because consumers do not appreciate it when functionalities
are removed. The other developers of this company (P7 and P9)
agree with this perspective. In their opinion, the introduction of
breaking changes would be detrimental to customer satisfaction;
this is despite this company providing detailed documentation on
how to transition to the replacement feature along with customer
support to aid the transition.

Interviewee P12 echoed the previous sentiment. Their company
too prefers to never remove a deprecated feature. In fact, they are
willing to maintain two versions of the same feature in their code
base. This company has only ever introduced a breaking change
when there was a severe flaw in the feature that was being used
and in such a case the feature was not deprecated first.

P14 mentioned that they also do not remove a feature from their
API. After a feature is deprecated, they first remove all references
to it from their own code base. After this, they move this feature to
a legacy package. This does not involve changing the namespace of
the feature, they simply build their APIs JAR in such a way that they
obtain one version with no legacy features (i.e., no deprecated fea-
tures) and another which includes them. This gives the consumers
of this API the choice of continuing the use of a legacy feature.

Interviewee P17 mentioned that in their API they often remove
a deprecated feature, however, they do not have a regular schedule
or policy. What can trigger the removal may be major changes such
as a modification in the underlying architecture of the API.

Only interviewee P15 mentioned that they have a protocol to
remove deprecated features. When deprecating a feature they in-
dicate the release in which this feature is going to be removed.
They generally remove deprecated features in the following ma-
jor release. On being asked about this policy resulting in breaking
changes, the interviewee responded: “We deprecate a feature when
we have a point where we see it’s not useful . . . and then we remove
it in the next major release . . . because we have a new [,better]
implementation.”

API producers are wary about removing deprecated fea-
tures from their API and mostly have no preset protocol
for removal.

4.3 RQ3: How do API producers expect their
consumers to react to deprecation?

We asked our interviewees whether they perceived that (1) dep-
recation on its own was enough to send a message across that a
feature should no longer be used and (2) whether it would act as an
incentive for their clients to react to API evolution. Predominantly,
most of our interviewees said that it was the choice of the consumer
to react, but that the deprecation mechanism would have no impact
on reaction behavior. In the words of P17: “I think it’s an easy way
out for developers of an API because it is really easy to edit and
notify your users, but you do not actually remove the whole feature.
So you are stuck with the sense that a user can be willing to keep
using it and not be incentivized to actually stop using it”.

The only outlier we had was interviewee P5 who disagreed
with the popular sentiment and went on to say that deprecation
is a beautiful concept as it gives a consumer the time to consider
reacting: “just marking something deprecated will give you an
opportunity to think of alternative ways of doing things but at the
same time keeping control over when you want to move on . . . to
new features”.

As a follow-up, we asked our interviewees if deprecation of a
feature could act as an incentive for their clients to change the
version of the API that they are using. Interviewee P10 mentioned
that the reason behind the deprecation would be key: “Yes, . . . the
reason for deprecation has to be concrete enough for me to switch
to the new versions”.

In the view of interviewee P2, the decision to switch versions is
often based on the cost of an upgrade: given that deprecation is not
a breaking change, it does not act as a stumbling block; however,
if the reason behind deprecation is serious enough, then there is
an incentive to change. Overall, API producers assume that their
clients will react to deprecation only if the reason is serious.

We also wanted to establish if deprecation of a feature dissuades
the usage of that feature to such an extent that it can be safely
removed. Some of our industrial interviewees said that when they
deprecate a feature, they can often remove it safely later on as they
know that their clients have received the message. Concerning OSS,
P16 said: “For JUnit, it hasn’t really worked out to deprecate things
and then get rid of them . . . [but it] might work for some other
libraries”. He recounted a case where JUnit had deprecated a single
field in the codebase, which had caused IDE’s such as Eclipse to post
issues on JUnit as they were opposed to that field being deprecated.

One point of agreement across all the API producers was that an
automated tool that helps API consumers to react to deprecation
with minimal effort would probably be most beneficial. Such a tool
would ensure that clients react, and keep concerns regarding cost
to change at a minimum.

API producers acknowledge the costs for consumers as-
sociated to reacting to deprecation. For this reason, they
assume a prompt reaction by consumers only if the reason
behind deprecation is serious.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. A. Sawant, M. F. Aniche, A. van Deursen, A. Bacchelli

4.4 RQ4: Why do API consumers react to
deprecated features?

We start by ascertainingwhether API consumers react to deprecated
features. In the event that they do react, we investigate why.
Do API consumers react to deprecated features? In addition
to investigating whether consumers react to deprecated features,
we also explore whether deprecation acts as a barrier to upgrading
the version of the API being used.

Deprecation is regarded by consumers as the least important
reason that prevents them from changing versions of the API. Over
40% of the consumers are neutral about its impact, while only 1%
indicate that deprecation has prevented them from upgrading API
versions. We see that the largest barrier to API consumers when
upgrading a version of an API is the new version breaking some
existing functionality. This is in line with previous findings [4].

Most consumers claim that they react to deprecation, we asked
these API consumers as to how they react. 67% of consumers in-
dicate that they react by replacing a deprecated feature with its
recommended replacement. 66% of our respondents claim to read
the documentation and then base the reaction on the motivation
behind deprecation. “doing nothing” is the second least popular
way to react to deprecation, 26% of the survey respondents indicate
that they have never reacted in this manner. The least popular way
to react to deprecation is to replace the deprecated feature with an
in-house feature. These findings contradict earlier results et al. [29]
showing that majority of projects on GitHub do not react to API
deprecations. However, one explanation for this might be that these
responses might be an indicator of the social desirability bias, thus
prompting the consumers to claim that they always react.

We ask the respondents who have never reacted to deprecation
to explain the reason behind their behavior. Most responses indi-
cated that since deprecation is not a breaking change, reacting to
deprecation is not pivotal. This is summarized by one respondent
saying: “It is the safest bet to keep things as they are. Deprecation as
such does not change the behavior of the solution, so it doesn’t need
to be acted upon”. Other responses include API consumers saying
that the cost of a reaction was not justified hence they preferred
to wait till the deprecated feature is removed. Poor documentation
was also cited as a reason not to react.
Why do API consumers react to deprecated features?We ask
our survey respondents to indicate what motivated them to react
to deprecation. These results can be found in Figure 3.

We asked the API consumers if knowing the removal policy of an
API regarding deprecated features had any impact on their decision
to react. This was a point of contention, with 29% of respondents
saying that this had indeed motivated them to react. However, a
majority of 36% claimed that this had never motivated them and
that the reason behind deprecation had far greater significance.

We see in Figure 3 that the motivation behind deprecation plays
a large role in eliciting a reaction from the API consumer. When a
feature is deprecated due to functional issues, non-functional issues,
or because a new feature is an improvement over the old one, there
is a large number of API consumers (over 40%) in each case that
says they have been motivated to react in that case. 27% or less
of the API consumers indicate that other reasons have motivated
them to react to deprecation.

Its use is no longer
necessary

A non-functional issue
has emerged

New/better features
have been developed
A functional issue
has emerged

It encouraged bad
coding practices
It is no longer going
to be supported

It marks a
feature as beta

Never Almost never Neutral Almost every time

0

Every time

0 40% 80%40%80%

Figure 3: Motivations to react to deprecation according to
API consumers’ experience, by decreasing frequency

API consumers predominantly claim that they react to dep-
recation, the driving factor behind this behavior is the rea-
son behind deprecation.

5 ANALYSIS AND REFLECTION
We now discuss the main findings of our study. The knowledge
gained from this study helps us understand the gaps (and how to
address them) in the current implementation of the deprecation
mechanism and deprecation in Java on the whole.

5.1 A communication mechanism
Previous work by Sawant et al. [29] has shown that API consumers
in the Java ecosystem do not necessarily replace references to dep-
recated features in their source code. This is similar to the behavior
observed in the SmallTalk sphere by Robbes et al. [24] as well.

One of the contributing factors to this phenomenon is the fact
that third-party API producers and Java SE API producers do not
have consistency when it comes to the removal of a feature from
the API as seen in Section 4.2. This points to the fact that the
deprecation mechanism in its current form might not be fulfilling
its goal in effectively communicating when it is imperative that an
API consumer cease to use a deprecated feature.

From the interviews, we observed that API producers agree with
this view as they too feel that certain improvements can be made to
streamline the communication between producers and clients. To
address this, we leverage the interface usability guidelines outlined
by Jakob Nielsen [19]. By considering deprecation as a communica-
tion interface between API producers and API consumers and by us-
ing interface usability guidelines, we hope to be able to understand
the shortfall in the effectiveness of the deprecation mechanism as a
communication mechanism.

In the following, we discuss two enhancements to the current
deprecation mechanism that would better facilitate the communica-
tion between API producers and consumers, namely understanding
when a feature will be removed from the API and the severity level
of the deprecation.

Understanding Developers’ Needs on Deprecation as a Language Feature ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

The future of deprecated features. The current implementa-
tion of the deprecation mechanism is in direct contravention of
Nielsen’s [19] guideline on “Visibility of system status,” which states:
“The system should always keep users informed about what is going
on.” Indeed, with the current deprecation mechanism provided by
the Java language, API consumers have no indication on the future
of a deprecated feature.

The enhancements in Java 9’s deprecation mechanism attempt
to address this shortcoming by allowing API producers to indicate
whether a deprecated feature is going to be removed or not. By
doing so, API consumers will be given a clear indication about the
future of a deprecated feature. This will help the consumer take a
decision on the reaction to deprecation.

However, the enhancements do not go far enough in addressing
the issues present in the usability of the deprecation interface. Al-
though the future of a deprecated feature has been made explicit,
there is still no definite timeline that an API producer can provide
to the consumer. By just marking a feature as one that will be re-
moved, no indication is given as to how long the removal could take,
which still leaves the future of a deprecated feature in an ambiguous
state as the deprecated feature could be removed immediately or
after many years. Currently, the onus is on APIs to provide this
timeline in the Javadoc (e.g., Spring framework), however, this is
not standard practice [2].
The severity of a deprecation. Nielsen’s usability guideline on
“Consistency and standards” dictates that “Users should not have
to wonder whether different words, situations, or actions mean the
same thing” [19]. In the current implementation of the deprecation
mechanism, there is no way to discern the difference between
features deprecated due to serious issues, those that have been
deprecated due to small improvements, or even those that have been
deprecated because there was no better alternative to communicate
with the customers (as in the case of beta features). The proposed
enhancements to the deprecation mechanism to be implemented in
Java 9 do not address this issue.

We see from API producers (Section 4.3), that there are differ-
ent suggested reaction patterns for different deprecations. Only in
certain cases where there is a serious issue with a feature, do they
feel it is imperative for the consumer to react. From the API con-
sumers that answered our survey, we understand that the reason
behind deprecation is important when it comes to reacting to a
deprecated feature. Functional issues, non-functional issues, and
bad coding practices are all major motivations when it comes to
reacting to deprecated features, whereas they are less likely to react
to a deprecation of a feature due to the fact that usage of it is no
longer required. In the current state, the deprecation mechanism
does not allow for API producers to inform the API consumers on
the severity of a deprecation.

An indication of the severity of deprecation would not be a novel
extension to Java’s deprecation mechanism. Currently, C# [18] al-
lows API producers to indicate if a deprecation is severe or not with
the help of a boolean. In the event that a deprecation is serious,
the compiler throws an error when the functionality is invoked.
Although C#’s approach can be considered extreme, it shows that
indication of severity of a deprecation is a viable feature in a depre-
cation mechanism. We highlight that this extension to the mech-
anism is of utmost importance to API producers and consumers

alike and will aid the deprecation mechanism in functioning as a
more effective communication interface.

5.2 Misuse of deprecation
Currently, in Java, if an API producer wants to issue a compiler
warning to communicate with the consumer, the deprecation mech-
anism is the only straightforward option. API producers have at-
tempted to overcome this limitation in the Java language specifi-
cation by implementing workarounds (e.g., in the case of XWiki,
beta features are marked using a special annotation which requires
special IDE support so that it is highlighted). However, none of
these workarounds are natively supported by IDEs or Continuous
Integration (CI) environments and, thus, not portable.

This has led to the misuse of the deprecation mechanism, where
certain features that are not intended for removal in the future are
marked as deprecated (e.g., in the case of JUnit where beta features
are marked as deprecated).

This leads us to conclude that there is a need for an alternative
way for API producers to communicate with the API consumers,
especially in the casewhere theywould like to indicate that a feature
is beta or experimental. A generic warning mechanism that gives
API producers the ability to generate compiler warnings on usages
of certain features of the API for reasons other than deprecation
could solve this issue.

Such mechanisms already exist in other languages (e.g., Python
has a warning system that allows for the specifications of different
levels of compiler warnings) and would not be a revolutionary
introduction. However, by introducing such a system and making
deprecation a sub-case of the warningmechanism the Java language
designers would allow API producers increased flexibility. There is
currently no proposal to introduce such a mechanism; we postulate
that it would be fruitful for the Java community to discuss this.

5.3 API consumer aid with deprecation
Most of our interviewees suggested that refactoring tools to au-
tomatically replace references to deprecated features with their
recommended replacements could incentivize API consumers to
react to deprecation, as it would reduce the overall cost to react to
deprecation and reduce the chances of errors.

There is some existing work on providing refactoring support
to API consumers to reduce the burden of reacting to deprecation.
Henkel and Diwan [10] propose to capture refactorings made by
API producers to their codebase when adapting to their own dep-
recated features and then replaying these refactorings on the API
consumers’ code. Xing and Stroulia [33] developed an approach
that recommends alternative features from an API to replace an
obsolete feature by looking at how the API’s own codebase has
adapted to change. The tool created by Perkins [20] replaces depre-
cated method invocations with the source code of the deprecated
method from the API itself. This has been shown to be effective in
75% of cases.

Although exploring promising avenues, all of the aforementioned
tools require a non-trivial amount of effort from the API producers,
thus do not scale. Additionally, these tools do not handle more
complex cases where the replacement for a deprecated method is

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. A. Sawant, M. F. Aniche, A. van Deursen, A. Bacchelli

Specify version when deprecated
and whether it will be removed

Create a generic warning,
superclass of deprecation

Very undesirable Undesirable Neutral Desirable

0
Very desirable

0 40% 80%40%80%

Automated refactoring to
replace deprecated calls

Have different
strengths for warnings

R
S
W

Figure 4: Respondent’s perspective on the enhancements to
the Java deprecation mechanism

not a one-to-one replacement. This shows that this problem of auto-
matically replacing deprecated features is non-trivial and remains
unsolved. The persistent need for such a tool calls for increased
research in programming languages and practices supporting auto-
mated API restructuring.

6 PROPOSED ENHANCEMENTS TO THE
DEPRECATION MECHANISM

Based on our results and analysis, we have uncovered certain as-
pects surrounding the deprecation mechanism that are especially
important for the Java language designers. In the second part of
this study, we propose and investigate desirability and feasibility
of three enhancements. The first two are related to the deprecation
mechanism: they go beyond JEP 277, aiming at defining a more
complete deprecation mechanism. The third proposal address an
issue at a higher level - the language level.

(1) R: Removal dates should bemarked: Deprecation should
allow developers to indicate the version or date when a
deprecated feature will be removed.

(2) S: Severity should be marked: Deprecation should allow
developers to indicate the severity of a deprecation and raise
warnings of according strength.

(3) W:Warningmechanisms should be generic: Java should
introduce a warning mechanism to allow for other types of
warnings to be raised, as well as managed by IDEs, thus
minimizing the misuse of deprecation.

We refer to our proposal asRSW from this point on. We validate
the desirability and feasibility of RSW by performing a two-step
validation. First, we obtain feedback from the larger community
of Java developers (survey with the same 170 professionals) to
understand to what extent there would be support forRSW. Second,
we interview two Java language design experts (one of them being
the promoter of JEP 277) to determine whether RSW could be
implemented in Java and if-so then how this could be done and
what the associated difficulties would be.

6.1 Desirability among the Java community
We present the results of our survey in Figure 4. 78% of develop-
ers find R to be (very) desirable and only 7% do not want such a
change. In fact, in our optional write-in survey option, 2 developers
expressed even more support for this feature.

We see that S is the third most desired change, thus implying
that Java developers would like API producers to be allowed to
signify to their clients that in certain cases it is pivotal that the

client reacts. This supports that API consumers do not get a clear
indication as to how severe the deprecation of a feature is.

W aims to give API producers more flexibility when it comes to
communicating with their clients. We see that there is no strong
trend among Java developers concerning the desirability of this pro-
posal: The 22% of the developers who find it desirable are balanced
by 27% who find it undesirable. Moreover, 51% of the developers sit
on the fence in this case and have neutral opinion on the warning
mechanism. This result may indicate that the Java community does
not currently perceive it as necessary to have different warnings
other than deprecation; this would be in line with the low number
of respondents who reported to use the deprecation mechanism
for purposes different than the intended ones (Section 4.4). Never-
theless, this proposal is the one that diverges the most from what
developers are already used to, thus, it would be reasonable to
consider the results in the light of the theory on the “diffusion of
innovations” [25]; in this case, the percentage of the respondents
that found this enhancement desirable would be slightly higher
than the expected percentage of early adopters of innovations [25].

We also asked our survey respondents whether they would wel-
come an automated refactoring tool to deal with deprecation. The
survey respondents were primarily positive, confirming the opinion
of the interviewed API producers.

6.2 From theory to practice: RSW’s Feasibility
We assessed the feasibility of implementing RSW in the Java lan-
guage bymeans of an interviewwith the promoter of JEP 277 (Stuart
Marks referred to as J1) and a Java language design expert (referred
to as J2) who has been part of the expert group for JSR-305 [21] and
the specification lead group of JSR-308 [6].
R: Indication on a removal timeline for deprecated features.
Regarding R, J1 mentions that the implementation would be possi-
ble but not trivial. The principal challenge is how such a feature
could be implemented. The first issue with indicating in which
version a deprecated feature is going to be removed is that version
numbering schemes constantly change. The second issue is that
having a concrete date would pose a challenge as well since release
schedules constantly change (e.g., Java 9 release has been pushed
back twice in the last year). However, J1 did concede that giving
such an indication is definitely useful to API consumers, but only if
a uniform version numbering convention is adopted by third-party
APIs and the Java SE.

J2 confirmed as well that Rwould send a more concrete message
about removal to the API consumers. However, he felt that there
would be no need to over complicate the annotation to achieve this
aim: “[there is no] need to make the annotation that much more
complicated”. He felt that if an API established and adhered to a
uniform policy to deal with deprecated features, that might achieve
the same goal.
S: Indication on the severity of deprecation.With S, we hope
to provide API consumers a clear indication as to how severe a cer-
tain deprecation is. J1 said that for JEP 277 something similar was
considered: “[the idea was] to include an enumerator that specifies
the reason behind deprecation such that tools could do filtering
based on the reason, and different reasons would have different
severities for different users”. According to him, the issue was that

Understanding Developers’ Needs on Deprecation as a Language Feature ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

compiling a comprehensive list of distinct reasons behind depre-
cation of a feature is a non-trivial endeavor. In fact, we observed
in our interviews that, in many cases, deprecations could fall into
more than one category. However, our proposal differs from this
as it allows API producers to indicate the level of severity i.e., the
seriousness with which API consumers should take this deprecation
into account. This is similar to the severity field in the deprecation
mechanism in C#. J1 felt that it could be implemented in Java but
only after further deliberation on this takes place.

In J2’s opinion having two different levels of deprecation: “error
versus warning” would be a good idea, as it would give API pro-
ducers enhanced control over the usage of the features their API
provides. However, there are two principal challenges associated
with this: First, the deprecation mechanism would have to provide
a boolean flag that would allow an API producer to indicate if it
is severe or not, which would also indicate to the compiler if a
warning or error should be thrown; Second, a better understanding
would be needed to demarcate deprecated features that are severe
and those that are not.

W: A high-level warning mechanism. W does not impact the
deprecation mechanism directly, but seeks to address the misuse
of the deprecation as elucidated in JEP 277. In this work, we found
just one case of misuse of the deprecation mechanism where a
beta feature was marked as deprecated. J1 agreed that marking
beta features as deprecated is “off label” usage of the deprecation
mechanism. During the discussions on JEP 277, it was considered to
have “experimental” as a reason to deprecate a feature. Despite this
extension never being implemented, no further steps were taken to
minimize this misuse of the deprecation mechanism. J1 felt that a
warning mechanism would be extreme. In fact, he suggested that
one viable alternative that will be present in Java 9 is “incubator
modules, which are sort-of related to beta or experimental”. How-
ever, these are coarse-grained as they apply to entire modules and
not individual classes or methods.

J2 was was not entirely supportive of adding a generic warning
mechanism to Java. He felt that “[by attempting] to eliminate every
type of misuse, we’re only going to open the opportunity for more
types of misuse, and we’re going to make it harder for people who
are going to use it in a sensible way or in an imaginative way”.
He also felt that introducing an explicit warning mechanism and
making deprecation a subclass of that system would be too massive
a change to introduce into the Java language. However, he was
supportive of first trying out more specific warnings as in the case
of JSR-305 [21]. This would then entail creating a generic warning
mechanism that could be reused for each specific warning.

7 COMPARISON OF DEPRECATION
MECHANISMS IN OTHER LANGUAGES

Besides Java, there are many other languages that provide a mecha-
nism that allows API producers to deprecate features in their APIs.
We investigate to what degree these languages implement RSW.
We focus on languages that have the deprecation mechanism as a
built-in feature in the language, unlike languages such as Python
or Go that rely on documentation and coding conventions to mark
functionality as deprecated. Additionally, we evaluate whether they
implement any feature in line with RSW.

We select the first 15 languages from the Tiobe language popu-
larity index [13] that have a built-in mechanism, and to analyze if
newer languages do a better job with deprecation we look at lan-
guages that have been released since 2010. We also add SmallTalk
to this comparison as it has been studied in previous work. This
results in a comparison between 21 languages seen in Table 2.

We first of all note that no language implements all of RSW.
Ruby and Dart are the only languages that allow API producers
to indicate when a deprecated feature is going to be removed (R).
Scala, on the other hand, allows API producers to indicate if a
deprecated feature is going to be removed. Visual Basic, Kotlin, and
C# are the only languages that implement S. Only 6 languages allow
developers to issue a custom compiler warning (W). The warnings
thrown in PHP and hack are runtime warnings, whereas for the
other languages they are all compiler warnings.

Julia, Swift, Scala, and Rust allow developers to indicate the
version in which a feature was deprecated. For the other languages,
this fact is typically communicated with the aid of documentation.
However, unlike Java’s Javadoc system that supports deprecation,
most languages do not provide a dedicated mechanism to document
deprecation.

In terms of variance between newer and older languages, we see
that Kotlin, Rust and Swift are the most advanced as they implement
one of the facets of RSW. Among the more established languages,
C# and Ruby standout as well.

We see that there is no uniform manner in which languages
implement their deprecation mechanism. In fact, newer languages
who have a clean slate to start with also do not implement all
the features that would constitute a more complete deprecation
mechanism.

Languages are not consistent in implementing a depreca-
tion mechanism and none implement RSW fully.

8 RELATEDWORK
Previous studies have focused on deprecation from the client per-
spective. Particularly Robbes et al. [24] analyzed the reaction to
deprecated features in the SmallTalk ecosystem. They found that
in most cases clients prefer not to react to an obsolete API feature.
This study was extended by Sawant et al. [29] who analyzed the
reaction to deprecated features of 5 popular Java APIs. This study
confirmed the results of Robbes et al. with one exception where
clients of Java APIs were less inclined to replace an obsolete feature
with a replacement feature from the same API.

There have been a few studies focused on an APIs deprecation
policy itself. Raemaekers et al. [22, 23] investigated when API devel-
opers deprecate features. They found that APIs introduced depre-
cated features in major andminor releases in equal measure. Brito et
al. [2] investigate whether API developers document deprecated
features with a link to the replacement feature. They found that
in two-thirds of the cases deprecated features were appropriately
documented by the API developers, however, they found that the
quality of these deprecation messages did not improve over time.

The introduction of breaking changes in APIs and their impact
has been a major topic of study. Dig and Johnson [5] studied and

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. A. Sawant, M. F. Aniche, A. van Deursen, A. Bacchelli

Table 2: Deprecation mechanisms across languages

Language
Version of
feature
deprecation

Warning:
feature to be
removed

R S W

Most popular languages with a deprecation mechanism
Java 8 ✓
C# ✓
VBasic ✓
PHP ✓ ✓
Ruby ✓ ✓ ✓
Delphi ✓
R ✓ ✓
Obj.-C ✓
Dart ✓ ✓
D
Scala ✓ ✓
Clojure
Haskell
Groovy ✓

Languages developed since 2010
Swift ✓
Rust ✓
Kotlin ✓ ✓
Ceylon
Julia
Hack ✓ ✓

Language with deprecation investigated in previous work
Smalltalk ✓

classified the API breaking changes in 4 APIs. They found that
80% of the breaking changes introduced in an API were due to
refactorings. Cossette and Walker [3] studied 5 Java based APIs to
investigate how API evolution recommenders would handle certain
cases. Their study showed that none of the recommenders could
handle all of the breaking cases.

The impact of breaking changes in APIs can be wide ranging. For
example, Linares-Vasquez et al. [14] show that breaking changes in
Android APIs have an impact on the rating of an app. Espinha et
al. [7] looked at the impact of breaking changes introduced in
popular web APIs such as Twitter, Facebook etc. Xavier et al. [32]
looked at 317 real-world Java libraries and showed that 14% of API
changes are breaking in nature and 2.5% of the clients of these APIs
are affected by these changes.

Studies on why APIs evolve over time and what decisions go into
evolving an API provide a unique insight into the inner workings of
APIs. Bogart et al. [1] studied how developers decide to introduce
breaking changes in APIs in the Eclipse, R, and NodeJS ecosystems,
how these changes are communicated to the clients of the APIs and
what tooling and practices are adopted to ensure that the impact of
the change is minimal. They show that each ecosystem has its own
policy to evolve and this policy is tightly coupled with the nature
of the developers that work in that ecosystem. Hou and Yao [12]
explore the breaking changes in Java’s AWT/Swing framework
and find that these changes are limited due to the quality of the
pre-existing architecture of the framework.

9 CONCLUSION
Java’s deprecation mechanism is planned for change due to issues
perceived by the Java language designers [16]: For the third time,
the deprecation mechanism in Java is being revamped. Most main-
stream languages offer a deprecation mechanism, but there is no
uniform, universal support across languages. These facts witness
that deprecation as a whole is an unsolved problem and that there
is no clear understanding as to what constitutes an effective depre-
cation mechanism.

With this work, we aimed at empirically determining the devel-
opers’ needs concerning deprecation. We did this by conducting a
two-step study, involving an exploratory investigation and a vali-
dation with a large number of Java developers.

Our results show that API producers do not have any kind of
preset protocol to remove deprecated features from their codebase,
thus making the future of a deprecated feature ambiguous. API
consumers, are more concerned with the reason behind depreca-
tion as that proves to be the ultimate motivation to react. Based on
these findings, we proposed two enhancements for the deprecation
mechanism, namely, the indication of the version in which the dep-
recated feature will be removed, and different severity levels for
different types of deprecation. Furthermore, to counteract the mis-
use of the deprecation mechanism, we also proposed to extend Java
with a warning mechanism. These changes go beyond the proposed
revamp of the Java deprecation mechanism, and we showed that
the larger Java community would find these extensions valuable
and at the same time, Java language designers found these changes
to be challenging, yet feasible to implement. The knowledge that
we accumulated in this study is not applicable to only Java, but also
to other languages which may choose to alter the way in which
they implement their deprecation mechanism.

With this paper we make the following main contributions:
• An understanding of why and how API producers use the
deprecation mechanism and a catalog of reasons that moti-
vate API consumers to react to deprecation, thus providing
researchers and language designers with an in-depth under-
standing of required features of a deprecation mechanism.

• A proposal that enhances Java’s deprecation mechanism
whose feasibility and desirability is evaluated with the aid of
two Java language designers and a survey with 170 respon-
dents, showing that certain aspects of our proposal would
be well received by the Java community.

• An analytical comparison between the deprecation mech-
anisms of 23 popular and new languages, that shows both
practitioners and researchers the state of deprecation mecha-
nisms and how they deviate from amechanism that addresses
additional developers’ needs.

ACKNOWLEDGMENTS
The authors would like to thank all participants of the interviews
and the survey, as well as the anonymous reviewers for their thor-
ough feedback. A. Bacchelli gratefully acknowledges the support
of the Swiss National Science Foundation through the SNF Project
No. PP00P2_170529.

Understanding Developers’ Needs on Deprecation as a Language Feature ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.

How to break an API: Cost negotiation and community values in three software
ecosystems. In 24th Joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
ACM, 109–120.

[2] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do
developers deprecate APIs with replacement messages? A large-scale analysis on
Java systems. In Software Analysis, Evolution, and Reengineering (SANER), 2016
IEEE 23rd International Conference on, Vol. 1. IEEE, 360–369.

[3] Bradley E Cossette and Robert J Walker. 2012. Seeking the ground truth: a retroac-
tive study on the evolution and migration of software libraries. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 55.

[4] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empir-
ical study into evolution problems in java programs caused by library upgrades.
In Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week-IEEE Conference on. IEEE, 64–73.

[5] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of software maintenance and evolution: Research and Practice 18, 2 (2006),
83–107.

[6] Michael D Ernst. 2008. JSR 308: Type annotations specification. https://jcp.org/
en/jsr/detail?id=308. (2008). last accessed May 2017.

[7] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API growing
pains: Stories from client developers and their code. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 84–93.

[8] Adrian Furnham. 1986. Response bias, social desirability and dissimulation.
Personality and individual differences 7, 3 (1986), 385–400.

[9] Nahid Golafshani. 2003. Understanding reliability and validity in qualitative
research. The qualitative report 8, 4 (2003), 597–606.

[10] Johannes Henkel and Amer Diwan. 2005. CatchUp!: capturing and replaying
refactorings to support API evolution. In Proceedings of the 27th international
conference on Software engineering. ACM, 274–283.

[11] Donald C Hildum and Roger W Brown. 1956. Verbal reinforcement and inter-
viewer bias. The Journal of Abnormal and Social Psychology 53, 1 (1956), 108.

[12] Daqing Hou and Xiaojia Yao. 2011. Exploring the intent behind api evolution:
A case study. In Reverse Engineering (WCRE), 2011 18th Working Conference on.
IEEE, 131–140.

[13] TIOBE Index. [n. d.]. TIOBE.–2017.[Electronic resource]. Mode of access
http://www.tiobe.com/tiobe_index ([n. d.]).

[14] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API Change and Fault
Proneness: A Threat to the Success of Android Apps. In 9th Joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering. ACM, 477–487.

[15] Thomas R Lindlof and Bryan C Taylor. 2011. Qualitative communication research
methods. Sage.

[16] Stuart Marks. 2014–2017. JEP 277: Enhanced Deprecation. http://
openjdk.java.net/jeps/277. (2014–2017). last accessed Aug 2017.

[17] Stuart Marks. 2016. Java One presentation on JEP 277. https:
//oracle.rainfocus.com/scripts/catalog/oow16.jsp?event=javaone&search=
CON3297&search.event=javaone. (2016). last accessed May 2017.

[18] Microsoft. 2012. C# ObsoleteAttribute Class. https://msdn.microsoft.com/en-
us/library/system.obsoleteattribute(v=vs.110).aspx. (2012). last accessed May
2017.

[19] Jakob Nielsen. 1995. 10 usability heuristics for user interface design. Nielsen
Norman Group 1, 1 (1995).

[20] Jeff H Perkins. 2005. Automatically generating refactorings to support API
evolution. In ACM SIGSOFT Software Engineering Notes, Vol. 31. ACM, 111–114.

[21] William Pugh. 2006. JSR 305: Annotations for software defect detection. https:
//jcp.org/en/jsr/detail?id=305. (2006). last accessed May 2017.

[22] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2014. Semantic Version-
ing versus Breaking Changes: A Study of the Maven Repository. In Proceedings
of hte IEEE 14th International Working Conference on Source Code Analysis and
Manipulation.

[23] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2017. Semantic versioning
and impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140–158.

[24] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation?: the case of a smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 56.

[25] Everett M Rogers. 2010. Diffusion of innovations. Simon and Schuster.
[26] John R. Rose. 1996. How and When To Deprecate APIs. http:

//www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR. (1996). last
accessed May 2017.

[27] A.A Sawant, Mauricio Aniche, Arie van Deursen, and Alberto Bacchelli.
2017. Replication Package. https://www.dropbox.com/s/cwchbspdeek6iuh/
replicationpackage.zip?dl=0. (2017). last accessed May 2017.

[28] Anand Ashok Sawant and Alberto Bacchelli. 2016. fine-GRAPE: fine-grained APi
usage extractor – an approach and dataset to investigate API usage. Empirical
Software Engineering (2016), 1–24. https://doi.org/10.1007/s10664-016-9444-6

[29] A. A. Sawant and A. Bacchelli. 2016. On the reaction to deprecation of 25,357
clients of 4+1 popular Java APIs.. In Proceedings of the 32nd IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE press, in press.

[30] LEE SIGELAMAN. 1981. Question-order effects on presidential popularity. Public
Opinion Quarterly 45, 2 (1981), 199–207.

[31] Sally Thorne, S Reimer Kirkham, Janet MacDonald-Emes, et al. 1997. Focus
on qualitative methods. Interpretive description: a noncategorical qualitative
alternative for developing nursing knowledge. Research in nursing & health 20, 2
(1997), 169–177.

[32] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In Software
Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on. IEEE, 138–147.

[33] Zhenchang Xing and Eleni Stroulia. 2007. API-evolution support with Diff-
CatchUp. IEEE Transactions on Software Engineering 33, 12 (2007), 818–836.

https://jcp.org/en/jsr/detail?id=308
https://jcp.org/en/jsr/detail?id=308
http://openjdk.java.net/jeps/277
http://openjdk.java.net/jeps/277
https://oracle.rainfocus.com/scripts/catalog/oow16.jsp?event=javaone&search=CON3297&search.event=javaone
https://oracle.rainfocus.com/scripts/catalog/oow16.jsp?event=javaone&search=CON3297&search.event=javaone
https://oracle.rainfocus.com/scripts/catalog/oow16.jsp?event=javaone&search=CON3297&search.event=javaone
https://msdn.microsoft.com/en-us/library/system.obsoleteattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.obsoleteattribute(v=vs.110).aspx
https://jcp.org/en/jsr/detail?id=305
https://jcp.org/en/jsr/detail?id=305
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
https://www.dropbox.com/s/cwchbspdeek6iuh/replication_package.zip?dl=0
https://www.dropbox.com/s/cwchbspdeek6iuh/replication_package.zip?dl=0
https://doi.org/10.1007/s10664-016-9444-6

	Abstract
	1 Introduction
	2 The Deprecation Mechanism In Java
	3 Methodology
	3.1 Research Method
	3.2 Participant Selection
	3.3 Limitations

	4 Results
	4.1 RQ1: Why do API producers use the deprecation mechanism?
	4.2 RQ2: When and why do API producers remove deprecated features?
	4.3 RQ3: How do API producers expect their consumers to react to deprecation?
	4.4 RQ4: Why do API consumers react to deprecated features?

	5 Analysis and reflection
	5.1 A communication mechanism
	5.2 Misuse of deprecation
	5.3 API consumer aid with deprecation

	6 Proposed Enhancements To The Deprecation Mechanism
	6.1 Desirability among the Java community
	6.2 From theory to practice: RSW's Feasibility

	7 Comparison of deprecation mechanisms in other languages
	8 Related work
	9 Conclusion
	Acknowledgments
	References

